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Roadmap of the Lecture

1 Reminder: HMMs, ASR, Viterbi

2 Reminder: FSA, FST, WFST

3 Encoding Knowledge in WFSTs

4 Decoding with WFSTs
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Hidden Markov Model, Token passing

.
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Viterbi algorithm, trellis
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Phoneme based models — re-usable acoustic units

y eh s
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Decoding graph/recognition network
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Viterbi path with complex models

while state C is a collector state to save full expanded links between every word pairs.
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Viterbi path with back-tracking
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3 Encoding Knowledge in WFSTs

4 Decoding with WFSTs

Karel Beneš Large Vocabulary Continuous Speech Recognition 9/50



Why Finite State Transducers?

Motivation:
most components (LM, lexicon, lattice) are finite-state
unified framework for describing models
integrate different models into a single model via composition
operations
improve search efficiency via optimization algorithms
flexibility to extend (add new models)

→ speed: pre-compiled search space, near realtime performance
on embedded systems

→ flexibility: same decoder used for hand-held devices and LVCSR
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Finite State Acceptor (FSA)

0 1a 2b

◮ An FSA “accepts” a set of strings

◮ (a string is a sequence of symbols).

◮ View FSA as a representation of a possibly infinite set of
strings.

◮ This FSA accepts just the string ab, i.e. the set {ab}

◮ Numbers in circles are state labels (not really important).

◮ Labels are on arcs are the symbols.
◮ Start state(s) bold; final/accepting states have extra circle.

◮ Note: it is sometimes assumed there is just one start state.
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A less trivial FSA

0 1a

a

2b

◮ The previous example doesn’t show the power of FSAs
because we could represent the set of strings finitely.

◮ This example represents the infinite set {ab, aab, aaab, . . .}

◮ Note: a string is “accepted” (included in the set) if:
◮ There is a path with that sequence of symbols on it.
◮ That path is “successful’ (starts at an initial state, ends at a

final state).
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The epsilon symbol

0 1a
<eps>

◮ The symbol ǫ has a special meaning in FSAs (and FSTs)
◮ It means “no symbol is there”.
◮ This example represents the set of strings {a, aa, aaa, . . .}
◮ If ǫ were treated as a normal symbol, this would be

{a, aǫa, aǫaǫa, . . .}
◮ In text form, ǫ is sometimes written as <eps>
◮ Toolkits implementing FSAs/FSTs generally assume <eps> is

the symbol numbered zero
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Weighted finite state acceptors

0 1a/1 2/1b/1

◮ Like a normal FSA but with costs on the arcs and final-states

◮ Note: cost comes after “/”. For final-state, “2/1” means
final-cost 1 on state 2.

◮ View WFSA as a function from a string to a cost.

◮ In this view, unweighted FSA is f : string → {0,∞}.

◮ If multiple paths have the same string, take the one with the
lowest cost.

◮ This example maps ab to (3 = 1 + 1 + 1), all else to ∞.
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Semirings

◮ The semiring concept makes WFSAs more general.

◮ A semiring is
◮ A set of elements (e.g. R)
◮ Two special elements 1̄ and 0̄ (the identity element and zero)
◮ Two operations, ⊕ (plus) and × (times) satsifying certain

axioms.

Springer Handbook on Speech Processing and Speech Communication 11

Table 1: Semiring examples. ⊕log is defined by: x⊕log y = − log(e−x + e
−y).

SEMIRING SET ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

ply to countable sums (Lehmann [1977] and Mohri
[2002] give precise definitions). The Boolean and
tropical semirings are closed, while the probability
and log semirings are not.

A weighted finite-state transducer
over a semiring is

specified by a finite input alphabet , a finite output
alphabet , a finite set of states , a set of initial
states , a set of final states , a finite set
of transitions ,
an initial state weight assignment , and
a final state weight assignment .
denotes the set of transitions leaving state .

denotes the sum of the number of states and
transitions of .

Weighted automata (or weighted acceptors) are
defined in a similar way by simply omitting the
input or output labels. The projection operations

and obtain a weighted automaton from
a weighted transducer by omitting respectively the
input or the output labels of .

Given a transition , denotes its origin
or previous state, its destination or next state,

its input label, its output label, and its
weight. A path is a sequence of con-
secutive transitions: , .
The path is a cycle if . An -cycle
is a cycle in which the input and output labels of all
transitions are .

The functions , , and on transitions can
be extended to paths by setting and

, and by defining the weight of a path as
the -product of the weights of its constituent tran-
sitions: . More gen-
erally, is extended to any finite set of paths
by setting ; if the semiring is

closed, this is defined even for infinite . We de-
note by the set of paths from to and by

the set of paths from to with input
label and output label . For an accep-
tor, we denote by the set of paths with in-
put label . These definitions can be extended to sub-
sets by ,

, and, for
an acceptor, .
A transducer is regulated if the weight associated
by to any pair of input-output strings , given
by

(9)

is well defined and in . If , then
. A weighted transducer without -cycles

is regulated, as is any weighted transducer over a
closed semiring. Similarly, for a regulated acceptor,
we define

(10)

The transducer is trim if every state occurs in
some path . In other words, a trim trans-
ducer has no useless states. The same definition ap-
plies to acceptors.

3.2. Composition
Aswe outlined in Section 2.3, composition is the core
operation for relating multiple levels of representa-
tion in ASR. More generally, composition is the fun-
damental algorithm used to create complex weighted
transducers from simpler ones [Salomaa and Soittola,

In WFSAs, weights are multiplied along paths
summed over paths with identical symbol-sequences
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Probability or tropical semiring

0

1/2
a/1

b/4

2

a/2

b/1

3/2

b/1

c/3

b/3

c/5

Probability semiring (R+, +,×, 0, 1) Tropical semiring (R+ ∪ {∞}, min, +,∞, 0)

[[A]](ab) = 14 [[A]](ab) = 4

(1 × 1 × 2 + 2 × 3 × 2 = 14) (min(1 + 1 + 2, 3 + 2 + 2) = 4)
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Weighted finite state transducers (WFST)

0 1/0a:x/1

◮ Like a WFSA except with two labels on each arc.

◮ View it as a function from a (pair of strings) to a weight

◮ This one maps (a, x) to 1 and all else to ∞

◮ Note: view 1 and ∞ as costs. ∞ is 0̄ in semiring.

◮ Symbols on the left and right are termed “input” and
“output” symbols.
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Composition of WFSTs

A B C

0 1/0a:x/1
b:x/1 0 1/0x:y/1 0 1/0a:y/2

b:y/2

◮ Notation: C = A ◦ B means, C is A composed with B .

◮ In special cases, composition is similar to function composition

◮ Composition algorithm “matches up” the “inner symbols”
◮ i.e. those on the output (right) of A and input (left) of B
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Composition algorithm

◮ Ignoring ǫ symbols, algorithm is quite simple.

◮ States in C correspond to tuples of (state in A, state in B).
◮ But some of these may be inaccessible and pruned away.

◮ Maintain queue of pairs, initially the single pair (0, 0) (start
states).

◮ When processing a pair (s, t):
◮ Consider each pair of (arc a from s), (arc b from t).
◮ If these have matching symbols (output of a, input of b):

◮ Create transition to state in C corresponding to (next-state of
a, next-state of b)

◮ If not seen before, add this pair to queue.

◮ With ǫ involved, need to be careful to avoid redundant paths...
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Roadmap of the Lecture

1 Reminder: HMMs, ASR, Viterbi

2 Reminder: FSA, FST, WFST

3 Encoding Knowledge in WFSTs

4 Decoding with WFSTs
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Construction of decoding network

WFST approach [Mohri et al.]
exploit several knowledge sources (lexicon, grammar, phonetics)
to find most likely spoken word sequence

HCLG = H ◦ C ◦ L ◦G (1)

G probabilistic grammar or language model acceptor (word)
L lexicon (phones to words)
C context-dependent relabeling (ctx-dep-phone to phone)
H HMM structure (PDF labels to context-dependent phones)

Create H, C, L, G separately and compose them together

Karel Beneš Large Vocabulary Continuous Speech Recognition 21/50



Language model acceptor G
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Language models (ARPA back-off)

\1-grams:
-5.2347 a -3.3
-3.4568 b
0.0000 <s> -2.5

-4.3333 </s>

\2-grams:
-1.4568 a b
-1.3049 <s> a
-1.78 b a
-2.30 b </s>

start SB
<s>

a

a/3.0046 backoff

<eps>/5.7565

<eps>/7.5985

b
b/3.3544

a/12.053

b/7.9595 SE
</s>/9.9779

a/4.0986

<eps>

</s>/5.2959
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Pronunciation lexicon L

A ax
ABERDEEN ae b er d iy n
ABOARD ax b r ao dd
ADD ae dd
ABOVE ax b ah v

Non-determinism: the same phone sequence can output different
words (“I scream for ice cream.”)
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Pronunciation lexicon L with disambiguation symbols

A ax #1
ABERDEEN ae b er d iy n
ABOARD ax b r ao dd
ADD ae dd #1
ABOVE ax b ah v

Added disambiguation symbols:
if a phone sequences can output different words (“I scream for
ice cream.”)
non-determinism: introduce disambiguation symbols, remove at
last stage
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Deterministic WFSTs

0 1/0a:x/1
b:x/1

◮ Taken to mean “deterministic on the input symbol”

◮ I.e., no state can have > 1 arc out of it with the same input
symbol.

◮ Some interpretations (e.g. Mohri/AT&T/OpenFst) allow ǫ

input symbols (i.e. being ǫ-free is a separate issue).

◮ I prefer a definition that disallows epsilons, except as
necessary to encode a string of output symbols on an arc.

◮ Regardless of definition, not all WFSTs can be determinized.
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Determinization (like making tree-structured lexicon)
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Minimal deterministic WFSTs

0 1a
2b

3
c

4d

5d
0 1a

2b

3
c 4

d
d

◮ Here, the left FSA is not minimal but the right one is.

◮ “Minimal” is normally only applied to deterministic FSAs.

◮ Think of it as suffix sharing, or combining redundant states.

◮ It’s useful to save space (but not as crucial as determinization,
for ASR).
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Minimization (like suffix sharing)
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Pronunciation lexicon L
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HMM as transducer

.
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HMM as transducer (monophone)
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HMM transducer Ha

0

12:aa/-2.3842e-07

2
8:ae

3

0:sil

4301:#0

5
4:<eps>

710:<eps>/1.1921e-07

9

284:<eps>/0.11113

10285:<eps>/2.9449

11

286:<eps>/2.9449

0:<eps>

6

6:<eps>/-5.9605e-08

812:<eps>/-1.1921e-07

288:<eps>/2.6975

289:<eps>/2.6975

12290:<eps>/0.14469

291:<eps>/0.55411

293:<eps>/1.5476

294:<eps>/1.5476

295:<eps>/0.17433

296:<eps>/2.5934
298:<eps>/2.4625

0:<eps>

0:<eps>

13

300:<eps>

0:<eps>

(here shown for monophone case, without self-loops)

Karel Beneš Large Vocabulary Continuous Speech Recognition 33/50



Construction of decoding network

Let’s put all together:

HCLG = H ◦ C ◦ L ◦G (2)

H HMM: input PDF labels, output context-dependent phones
C context-dependency: input ctx-dep-phones, output phones
L lexicon: input phones, output words
G language model: input/output words
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Construction of decoding network

WFST approach by [Mohri et al.]

HCLG = rds(min(det(H ◦ det(C ◦ det(L ◦G))))) (3)

rds — remove disambiguation symbols
min — minimization, includes weight pushing

det — determinization

Kaldi toolkit [Povey et al.]

HCLG = asl(min(rds(det(Ha ◦min(det(C ◦min(det(L ◦G))))))))
(4)

asl — add self loops

rds — remove disambiguation symbols
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Weight and label pushing

two WFSAs are equal, if they accept the same label sequences
with the same weights
local distribution of weights along the path can be different
same holds for output labels in WFSTs

0

1

a/0

b/1

c/5

2

d/0

e/1

3

e/0

f/1

e/4

f/5

0/0

1

a/0

b/1

c/5

2

d/4

e/5

3/0

e/0

f/1

e/0

f/1

0/15

1

a/0

b/(1/15)

c/(5/15)

2

d/0

e/(9/15)

3/1

e/0

f/1

e/(4/9)

f/(5/9)

for pruning: apply costs as early as possible
make outgoing arcs stochastic distribution

→ output labels not synchronized anymore in WFST
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Decoding graph construction (complexities)

Have to do things in a careful order or algorithms “blow up”
Determinization for WFSTs can fail

need to insert “disambiguation symbols” into the lexicon.
need to “propagate these through” H and C.

Need to guarantee that final HCLG is stochastic:
i.e. sums to one, like a properly normalized HMM
needed for optimal pruning (discard unlikely paths)
usually done by weight-pushing, but standard algorithm can fail,
because FST representation of back-off LMs is non-stochastic

We want to recover the phone sequence from the recognized
path (words)

sometimes also the model-indices (PDF-ids) and the HCLG arcs
that were used in best path
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Roadmap of the Lecture

1 Reminder: HMMs, ASR, Viterbi

2 Reminder: FSA, FST, WFST

3 Encoding Knowledge in WFSTs

4 Decoding with WFSTs
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Decoding with WFSTs (finding best path)
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Decoding with WFSTs

0 1

1/4.86

2/4.94
3/5.31
4/5.91

2

1/4.16

2/5.44
3/6.31
4/5.02

3/0

3/5.16

4/8.53
1/6.02
2/6.47

◮ First– a “WFST definition” of the decoding problem.

◮ Let U be an FST that encodes the acoustic scores of an
utterance (as above).

◮ Let S = U ◦ HCLG be called the search graph for an
utterance.

◮ Note: if U has N frames (3, above), then
◮ #states in S is ≤ (N + 1) times #states in HCLG .
◮ Like N + 1 copies of HCLG .
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Viterbi algorithm, trellis

This seems easy, but it only applies for training!
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Beam search

“Beam size” is in practice often a limit on value (13.0), with another
hard limit on number of tokens (200).
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Decoding with WFSTs

◮ With beam pruning, we search a subgraph of S .

◮ The set of “active states” on all frames, with arcs linking

them as appropriate, is a subgraph of S .

◮ Let this be called the beam-pruned subgraph of S ; call it B .

◮ A standard speech recognition decoder finds the best path

through B .

◮ In our case, the output of the decoder is a linear WFST that

consists of this best path.

◮ This contains the following useful information:

◮ The word sequence, as output symbols.
◮ The state alignment, as input symbols.
◮ The cost of the path, as the total weight.
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Decoding output

utt1 [ 2 6 6 6 6 10 ] [ 614 613 613 613 711 ] [ 122 123 123 124 ]
utt1 SIL th ax
utt1 <s> THE
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Word Lattice / Word Graph

Word Lattice: a compact representation of the search space

COMPUTERS

0.7COMPUTES0.3

ARE0.5

EVERY

0.2

A
0.2 AVERAGE

0.1

VERY

0.5
5

VARIED0.15 ACTIVE

0.25

ATTRACTIVE0.2

OBJECTIVE0.3EFFECTIVE0.2

t1
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Lattices as WFSTs

The word “lattice” is used in the ASR literature as:
Some kind of compact representation of the alternate word
hypotheses for an utterance.
Like an N-best list but with less redundancy.
Usually has time information, sometimes state or word alignment
information.
Generally a directed acyclic graph with only one start node and
only one end node.
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Finite State Transducers for ASR

Pro’s:
Fast: compact/minimal search space due to combined minimization of

lexicon, phonemes, HMM’s
Simple: easy construction of recognizer by composition from states,

HMMs, phonemes, lexicon, grammar
Flexible: whatever new knowledge sources, the compose/optimize/search

remains the same
Con’s:

composition of complex models generates a huge WFST
search space increases, and huge memory is required
esp. how to deal with huge language models

Compared to what?

Compared to only composing H ◦ C ◦ L and keeping LM separate.
Done e.g. in RASR.
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Resources

OpenFST http://www.openfst.org
Library, developed at Google Research (M. Riley, J. Schalkwyk,
W. Skut) and NYU’s Courant Institute (C. Allauzen, M. Mohri)

Mohri08 M. Mohri et al., “Speech Recognition with weighted finite state
transducers.”

Kaldi http://kaldi.sourceforge.net
Open source toolkit in C++ with recipes (D. Povey and others)

Povey11 D. Povey et al., “The Kaldi Speech Recognition Toolkit.”
Povey12 D. Povey et al., “Generating exact lattices in the WFST

framework.”
RASR https://github.com/rwth-i6/rasr
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Alternatives to WFST: CTC

Independent softmax for each frame
Produces actual output or a blank
Greedy decoding super fast, usually little search error
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Alternatives to WFST: Listen-attend-spell

Autoregressive factorization
=> slower
=> more accurate, LM included
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