DATABASE USAGE IN WEB PAGE SEGMENTATION

Database usage in web page segmentation

Jan Zeleny

Abstract—Considering principles like templates, it is
possible to reuse the web page segmentation results for
more pages than just the one. Segmenting just one page
and storing the result for other pages based on the same
template can improve segmentation performance signifi-
cantly, especially for methods based on visual appearance
of the page. Storing the template along with the original
page structure (and reusing it afterwards) can be thought
of as a cache for segmentation algorithms. The motivation
for this paper is to find out what structures and what
features of these structures need to be stored for the cache
to work as expected.

Index Terms—object-oriented databases, object-
relational databases, DOM tree, VIPS, vision-based
segmentation

I. INTRODUCTION

N recent years, the World Wide Web has become

perhaps the most important source of information
in the world. A family of algorithms for web-
focused information retrieval grows with it. One
step of information retrieval is understanding dif-
ferent parts of the web page. This is achieved by
segmenting the web page and classifying resulting
segments. Although the area of web page segmenta-
tion has been extensively researched, storing results
of this process is usually discussed only marginally
even though it can be used to achieve much better
performance.

When we consider principles of modern web page
design like templates, it is possible to reuse the
segmentation result for more pages than just the
one it was created with. The principle of templates
defines that there is one template for a set of
pages within the same site. This template contains
blank spaces, where different data are placed to
create different web pages. Segmenting just one
page and storing the result for other pages based
on the same template can improve segmentation
performance significantly, especially for methods
based on visual appearance of the page. Storing the
template along with the original page structure (and
reusing it afterwards) can be think of as a cache
for segmentation algorithms. The motivation for this

paper is to find out what structures and what features
of these structures need to be stored for the cache to
work as expected. This paper also describes differ-
ent database types possibly convenient for storing
desired structures.

In section II a brief introduction to the area of
segmentation and classification is made, including
basic comparison of different approaches. An anal-
ysis of the DOM model and different vision-based
segmentation algorithms’ output follows in sections
III, IV-B and IV-B. The last thing that needs to be
stored is described in IV-C. Sections V and VI de-
scribe use cases and the database for these use cases
respectively. Description of some database types
convenient for storing proposed database follow in
VI-A and VI-B.

II. WEB PAGE SEGMENTATION

Web page segmentation algorithm are part of
Information Retrieval field. Web pages are semi-
structured documents. That means they have some
structure but it is usually weak, so it is necessary to
transform them to a form with hardened structure.
The problem with this transformation is that web
pages usually contain more logical parts and most
of these parts don’t contain any useful informa-
tion. For example news servers contain navigation,
polls, advertisements and links related articles. If we
wanted to index such page for example for purposes
of web search engine, it is important that only the
useful data is used and misleading information is
filtered. Although this is the main goal of majority
of segmentation algorithms, other applications are
possible as well —for example finding the navigation
in order to construct site map or filtering advertise-
ments.

The goal of visual segmentation algorithms is to
identify logical blocks as user sees them on the
page. To achieve this, the page has to be rendered
first. That is usually very demanding operation in
terms of computational time. However these algo-
rithms have great potential. The pioneering work



DATABASE USAGE IN WEB PAGE SEGMENTATION

in this area has been done by Cai et al. Their
algorithm VIPS [2] is used in many subsequent
papers dealing with page segmentation or classifica-
tion of identified segments. Only a few algorithms
not using VIPS are being developed. One of them
was introduced by Burget et al. [10]. Although they
work differently, some concepts remain the same.
In further text we will be focusing on the latter
algorithm and its result, but results of the former
one will be briefly described as well.

As it was already outlined, there are couple prob-
lems with vision-based segmentation algorithms.
The main one is their speed. The other one is
precision. In certain areas they perform very well,
but their results are not always satisfying. The latter
one might be solved with more complex algorithms,
but this would mean even more computational time
needed for the segmentation. The time issue can be
solved by using different algorithm family. There
are two main alternatives to visual segmentation.
The closest one is the DOM based segmentation.
Algorithms in this family only analyze features of
the DOM tree and its nodes like content and tree-
related features. Also some basic visual features are
analyzed, but not in the scope as that of vision-based
algorithms. Examples of different DOM-based algo-
rithms can be found in [17] and [16].

Another alternative approach is the Template
Detection [18], [22], [20], [24], [23], [19], [21].
Template is one of fundamental principles used
on modern web sites. These are not made of a
large amount of distinct pages, but rather from a
set of templates. This concept brings easier web
page creation and organization, therefore it is mainly
used in large CMSs, e-shops and blog applications.
Overall it is possible to say that the larger the site
is, the greater is the likelihood of templates being
utilized. Of course larger site usually means more
templates are used. That’s why these methods often
contain a clustering step—each cluster represent a
group of pages using the same template. Even with
this step, these methods usually scale better than
algorithms described above —instead of segmenting
one page at a time, more pages are analyzed in
parallel and the result is then applied to all of
them. What is important about template detection
is that these algorithms usually segment pages only
in two parts: femplate and content. Template con-
tains all information besides the content and it is
not segmented further. That’s why these algorithms

can’t be used as 100% replacement for vision-based
segmentation algorithms.

The goal of this work is to utilize advantage
template detection algorithms give us against visual
segmentation while removing their weaknesses like
the requirement to have certain amount of web
pages for the algorithm to work and segmenting
only in two parts.

III. DOM TREE

The Document Object Model (DOM) is both lan-
guage and architecture independent model used to
represent SGML-based documents. It is especially
used in area of World Wide Web as a means to work
with XML, XHTML and HTML documents. It is
the most common model used for this purpose. The
model has been standardized by organization W3C
in 1998 and it has developed and extended consider-
ably since then. It defines several interfaces from the
standard core, HTML and XML to CSS and event
handling. The standard has been developed in three
phases (which however did not follow exactly one
after another) called Levels:[1], [6]

« Level 0 only an informal specification contain-
ing a mix of HTML document functionalities.
It is sometimes referenced in further specifica-
tions for backwards compatibility.[7]

« Level 1 contains the core DOM specification. It
also contains some parts covering HTML and
XML, but the main focus is on the Core.

o Level 2 brings definition of handling style
sheets and style information attached to partic-
ular nodes. Some parts of Core definition from
Level 1 were updated as well. It also brings
other features, but they are not important for
this article.

o Level 3 does not bring anything important for
this article. Only some updates of Core module
are presented.

The following text will focus only on interfaces

defined in Core, HTML/XML and CSS parts.1

The tree is described by its API, which has been

implemented in many languages including Java,
JavaScript, PHP and C#. It can be used to describe
all content, structure and visual style of the web
page. The API itself consists of more interfaces,
each element can be described by one or more

"Note that many principles described also apply to interfaces
outside our scope.



DATABASE USAGE IN WEB PAGE SEGMENTATION

of them. All interfaces can define both properties
and methods. Since methods are not stored in the
database, only properties will be important to us.
The specification mentions two approaches to the
interface representation and implementation. The
first option is to follow classical object-oriented con-
cept of inheritance. The second one is a concept of
flattened view of the API. That means all properties
and methods of each object can be accessed by its
base class without the need of casting.
There are four basic data types in the specifica-
tion:
« DOMString a sequence of two-byte units
« DOMTimeStamp this is used to store absolute
of relative time in a form of integer number
measuring in milliseconds
« DOMUserData represents a reference to ap-
plication data. It can contain virtually any data
necessary.
« DOMODbject is a reference to any object
(equivalent of Object type in Java)

Besides these there are also some extended data
types like collections and lists (ordered collections).
DOMStringList and HTMLCollection are typical
representatives of these. Items in both can be ac-
cessed by ordinal number starting from zero, there-
fore both are basically equivalent to array type
known from many languages.

Now let’s summarize some general properties
of the DOM tree with regard to storing it in the
database.

« each node can have N child nodes depending
on its type.

« anode can have multiple attributes, again based
on its type. These attributes can be represented
either by one of basic data types or by child
nodes of Attr type. In this approach all attribute
objects are not considered to be a part of
the DOM tree. HTML extension of the DOM
also specifies that attributes can be present as
properties of the element object. However this
approach is deprecated and is specified only for
compatibility reasons.

« sibling nodes are linked in the list. They are
accessible as described above for collections
but in addition they are double-linked them-
selves (each node has a link to previous and
next sibling node).

« text is always considered to be node as well

(otherwise it would be impossible to represent
for example text with bold parts)

Here follows a description of some basic object
classes (interfaces) defined by the Core module
including their brief description why they could be
stored:

o Document describes the document and its
properties like its URI, document type and
encoding. It also contains reference to the root
node of the DOM tree.

« Element represents a tag in the document

« Attr in case attributes are represented by this
object. It contains only three useful informa-
tions: name and value of the attribute and a
flag if the attribute was specified or not.

Since this paper discusses storing the DOM tree
mainly for the purpose of mapping it to the output of
segmentation algorithms, it is possible not to store
the content of DOM tree itself. That means the text
nodes don’t have to contain the text itself. Also
image nodes don’t have to contain the image data.
But because some heuristics can be performed on
the stored tree, it is reasonable to save at least some
properties representing the text or image. These
can be for example character/word count or image
dimensions respectively.

As for CSS support, DOM offers two interface
families. The first one is designed to attach style
sheets to documents. That’s not important for our
purpose. However the second one focuses specif-
ically on CSS related properties of document and
particular elements. The most important part is
defined in CSS2 extended interface, which basically
states that each CSS attribute has its own equiva-
lent in DOM. For example margin-right CSS
attribute has marginRight as its equivalent. All
these DOM equivalents are grouped in DOM at-
tribute style, which each DOM node representing
HTML element can have.

IV. TREE OF VISUAL AREAS

For the purpose of this paper let’s consider the
output of every visual segmentation algorithm to
be the Tree of Visual Areas. Different algorithms
have different output formats, but they all have
characteristics of the tree structure. Considering
this and further focus of this paper these output
structures will be described in a way which shall
bring them close to formats needed for databases



DATABASE USAGE IN WEB PAGE SEGMENTATION

in further sections. Now let’s see output formats of
different algorithms.

A. VIPS
VIPS stands for Vision Based Page
Segmentation[2]. After being processed by

VIPS[2], the web page is represented by a set of
blocks, a set of separators and a relation between
blocks.

The most important feature of blocks is that they
are not overlapping. This means when put together
they complete level of the resulting tree (i.e. their
union creates their parent block). Each block in the
set is recursively segmented and then represented by
another set of blocks, separators and relation. This
implies a tree-like structure of the whole construct.
It also means that the web page itself is considered
and treated the same as any other visual block.
Leaf nodes of the resulting tree are called basic
objects. Each basic object corresponds to one node
in the DOM tree. Therefore each visual block can
contain one or more nodes of the DOM tree. Note
that the Tree of Visual Areas and the DOM tree
don’t have to correspond, i.e. a visual block doesn’t
have to correspond to a particular node in the DOM
tree. Because some additional heuristics and classi-
fication algorithms are performed on segmentation
results in some algorithms[9], [8] and it is also
necessary for the cache to work, the corresponding
DOM tree and the mapping between both trees
should be stored along with the output of VIPS.

For each block an information about its position
and size is absolutely essential. These properties can
be expressed as absolute numbers or relative to the
parent block[9]. Also the alignment with its parent
(for example float left) is used[9]. Considering how
VIPS works, an information about the Degree of Co-
herence as defined in [2] should be stored for each
block as well. For separators is is important to store
their visual impact, which can be in form of width
or visibility defined e.g. by borders or background
color of adjacent blocks. Relations between blocks
have one feature and that is the degree of visual
similarity of blocks in relation. This information is
not a part of VIPS output, but it is added in some
other algorithms using it[9]. The last piece needing
description is the relation between blocks on one
level of the tree. Two blocks are in this relation
if and only if they are adjacent to each other. An

important part of this relation corresponding also a
little with visual impact of a separator is the degree
of similarity of each 2-tuple in this relation[9].

B. Other algorithms

VIPS is not the only algorithm producing a Tree
of Visual Areas as its output. Burget in his work [10]
focuses on similar problems as VIPS. Structures
described in his work are slightly different. They are
also described in some of his previous works which
are not referenced here (they are not in English).

The tree produced by his algorithms contains two
node types: visual areas and content nodes. All
nodes except for the leaves are visual areas. Leaf
nodes of the tree are content nodes, also known as
content blocks. For the next paragraph we consider
the tree without these content nodes. All visual
areas contain information about the position and
dimensions of the area. To define both of these a
special topographical grid is constructed for each
non-leaf visual area. En example of this grid is
displayed on figure 1

Fig. 1. An example of the topographical grid

All child areas are then placed in the grid. A
position of each area is represented by the cell
of grid which the top-left corner of the area is
in and dimensions are represented by the number
of rows and columns the area takes. Here it is
important to remind that each area is rectangular
by definition. Every non-leaf node in the tree can
contain only other visual areas as child nodes. Each
leaf contains exactly one content node, therefore no
grid is necessary for it.



DATABASE USAGE IN WEB PAGE SEGMENTATION

Content nodes, also known as content boxes,
contain one or more content elements. Each content
node represents visual element on the page. In
case it contains more content elements, they are
concatenated to a string creating a single continuous
area of the document. Content element is an abstract
denotation. A way how to create content boxes
when composing the web page is specified by W3C
standard. There are two types of content element:

. image element: contains only information

about image width and height and the actual
image data in an arbitrary image format

o text element: contains the actual text and

properties of that text such as font size, color,
style, weight, ...
A root of the Tree of Visual Areas is created by a
Document node. This is not listed as the third node
type, because it is in fact a visual area with a title.

C. Mapping of trees

As discussed in previous sections, it is important
to save both the original DOM tree and the Tree
of Visual Areas. It is also important to know which
nodes of the DOM tree are represented by particular
visual area.

An example of typical tree mapping is displayed
on figure 2.

Fig. 2. An example of tree mapping

Mapping of tree for our purposes is different than
the problem of tree mapping as described in [11]
and [12]. In the literature, it is intuitively defined
as a list of actions (add, delete, replace) needed to
transform one tree into another, but in our case we
just need to know which nodes of the DOM tree are
represented by a particular visual area in the Tree
of Visual Areas.

Each leaf node in VIPS output is mapped 1:1 to
a node in the DOM tree. This can be solved by
simple object reference. However non-leaf nodes
don’t have to correspond to particular nodes. To
find out which DOM nodes the area represents, a
recursive search for all leaf successors and their cor-
responding DOM nodes can be performed. However
for convenience it should be possible to store a list
of subtrees represented by the visual area. A two-
way reference between DOM nodes and visual areas
might be considered. That would have to be M:N if
we consider that more Trees of Visual Areas might
be derived from single DOM tree.

Mapping between DOM tree and Burget’s al-
gorithm output tree is similarly simple. Content
nodes are represented by their DOM counterparts
as described in sections IV-B and III. The rest of
the mapping is fairly the same.

V. SEGMENTING CHAIN

Now that all structures which will need to be
stored are analyzed, it is important to specify some
things about the whole segmenting chain in order to
have complete information for the database design.

A. Parsing sources

In the first step, HTML and CSS sources are
parsed and the DOM tree is created. The tree can
be represented for example by standard classes in
Java, available in org.w3c.dom package.

B. Cache checking

This step has to be done right after the DOM tree
is created in order to spare as much computational
time as possible. For the cache checking a simple
algorithm can be used, for example the path com-
parison as described in [22]. For that purpose a set
of DOM paths in the document needs to be stored
or at least simply calculable.

C. Cache hit

In case the document template has been found in
the cache, corresponding tree of visual areas has
to be easily retrievable as same as the mapping
between the tree and the template. So it is clear
which visual area contains specific DOM node and
vice versa.



DATABASE USAGE IN WEB PAGE SEGMENTATION

D. Cache miss

In case the document isn’t found in the cache,
it has to be segmented and the result along with
the original DOM tree and the mapping has to be
stored.

V1. DATABASE

Based on analysis in previous sections, it iS now
important to define structures that will be stored
in the database. The DOM element is described as
follows:

public class DOMNode
{

String name;

LinkedList<DOMNode> children;
Map<String, String> attributes;
HashSet<VisualBox> boxes;

String path;
DOMNode nextLeaf;
}

Name means the name of the HTML tag which the
node represents. The list of children in obvious,
just a note here that the list has to be linked
in order to achieve given order of sibling nodes
which won’t change. Attributes are here just to
complement the design, they are not needed for
anything in particular. They can be however used for
more precise comparison of DOM trees if necessary.
The Last two attributes are here only to outline how
it is possible to achieve a simple computation of
path set of particular DOM tree. Each leaf will store
complete path leading to it and the link to the next
leaf node. The set of paths will be then constructed
by simple iteration over single-linked list.
The DOM document is described as follows:

public class DOMDocument

{
String url;
DOMNode root;
VisualArea segmentation;

HashSet<String> pathSet;

DOMNode firstLeaf;

URL can be used for simple duplicate detection.
It can be also used for template matching as de-
scribed in The root attribute basically points to
the tree itself. The last two attributes outline two
approaches which might be considered for path set
storing/computing. The first consists of computing
the path set directly while assembling the DOM tree
and storing it along with the tree. The second one
was already described above. This is just a marker
for the first leaf in the tree (pre-order traversal).

Visual areas and visual boxes will be stored in
following structures. The design is based on original
XML output of Burget’s algorithm. One important
thing is how visual boxes, visual areas and DOM
nodes are linked to each other. If badly designed,
a problem could occur with circular dependencies.
Some databases don’t handle these situations well,
therefore circular dependencies have to be reduced
to minimum. In following design all circular de-
pendencies are eliminated, because there is only
forward linking in a form of elements attribute
of VisualArea class. The linking is represented
this way in order to optimize probably most used
operation —retrieval of all DOM elements contained
in visual area of specific type.

public class VisualArea

{
String 1id;

x1;
X2;
gxl;
gx2;
gridw;

int
int
int
int
int

int vy1;
int y2;
int gyl;
int gy2;
int gridh;

String background;
float fontsize;
float fontweight;
float fontstyle;

LinkedList<VisualArea> children;
LinkedList<DOMNode> elements;



DATABASE USAGE IN WEB PAGE SEGMENTATION

public class VisualBox

{
int x1;
int x2;

int vy1;
int y2;
String color; String fontFamily;
int fontSize; String fontVariant;
int fontStyle; int fontWeight;
HashSet<String> decoration;

boolean replaced;
VisualArea parent;

Now that structures to be stored are defined,
the next step is to analyze databases where these
structures can be easily stored.

A. Object-relational databases

The Object-Relational data model is partially
derived from common relational data model, but in
comparison it solves their biggest weakness and that
is the atomicity of attributes as defined in the first
normal form. This limitation is not a problem in
simple applications (in a terms of precessed data)
such as banking systems. However even there it is
possible to observe first complications. For example
addresses are usually represented by several fields
(street, house number, city, etc.), but the applica-
tion might have a need for the address as one
corpus. O-R data model solves this by introducing
the possibility to store user data types. Address
would be just stored on one field of the table and
it would be represented by an object holding all
these information separately. Following block of
code shows an example how could the data type
be defined:

create type address as
(
number integer,
street varchar (100),
city varchar (100),
zip integer

Each property of object of user data type can
be reached by a “dot notation” as shown in the
following example

select addr.city from users

After being defined, objects of the data type can
be used in data fields of tables and as properties of
other objects. To get closer to the object-oriented
paradigm it is also possible to define tables of the
type as demonstrated by following example. Objects
of defined type will then represent rows of the
table. This concept is also required for some features
which will be described later.

create table addresses of address

User defined types in SQL are equivalent to
classes in standard programming languages. As
such, they have some features known from these
languages. One of such features is type inheritance.
When inheriting a type, both methods and properties
are inherited. Inheriting methods has its specifics,
but, since methods are not important for our pur-
poses, they will not be discussed here any further.
It is possible to use keyword final to specify that
a type can’t be inherited any more. SQL defines
not only type inheritance, but also table inheritance.
This corresponds to generalization/specialization as
known from entity-relationship models. Both these
inheritances imply the possibility to use the hierar-
chical DOM model design as described in section
M1

Reference types are the next useful feature of
object-relational databases. They are very similar
to object pointers in C++. It is possible to store
a reference to another object as an attribute of an
object. To use this in SQL, there is one limitation:
there has to be a table of referenced object type
in the database and of course the referenced object
has to be stored in this table. When creating a type
which contains reference attribute, this attribute has
to be given its scope —the table containing objects it
is possible to reference in that attribute. The scope
is mandatory and it makes this whole concept work
similar as foreign keys in relational databases. The
table of referenced type has to have self-referential
attribute defined —this is similar concept as in stan-
dard foreign keys. Dereferencing of an object is
similar as dereferencing pointers in C++. We can
use either —> operator, or combination of deref ()
and . operators. Reference types are important for
modeling the mapping between trees, because each
node can be referenced both from the tree itself and
also from the tree of visual areas.

Besides user defined data types, object-relational
databases offer two new data types: arrays and



DATABASE USAGE IN WEB PAGE SEGMENTATION

multisets. Multiset is a type similar to set known
from standard SQL, but it can contain multiple same
values as well. It was first defined in SQL 2003. The
array type is basically the same as known from C
language — it also has to have pre-defined length and
can store only one data type. As of SQL 2003, the
array can be also defined as unbounded. In that case
the only boundary is defined by implementation.
Compared to relational databases, both arrays and
multisets simplify some common design problems.
Simple 1:N relations are a good example of this.

There is one more simplification, which can be
considered new data type: unnamed row. These are
an alternative solution to user defined data types.
For example when we consider the users table
described above, unnamed row can easily replace
the address data type in addr column as exam-
ple below shows. This might be useful for storing
attributes of DOM nodes assuming that the flat
DOM design is used.

create table users
(
addr row
(
number integer,

)

The best approach to store DOM attributes is
in an associative array or as hash type, used for
example in Java. This type can be emulated to some
degree by a database table, but the result would
not be entirely satisfying. Alternative approaches for
this can be either array of objects representing DOM
attributes or specific column in the table for storing
DOM elements for each attribute. The latter one
and the associative array emulation are also possible
options to store style information as defined in the
DOM specification.

Since object-relational databases support object
references, it is also possible to create more com-
plex data structures like lists, queues and stacks.
Specifically, the first one can be used to store
relations between VIPS blocks by means of objects
containing references to both VIPS blocks they
separate. The positional grid as described in [10]
can be designed similarly, as two-dimensional array
of grid cells. This array will be also implemented
with object references. There is one more issue of
object-relational data model left and that is bridg-

ing the gap between programming language of an
application and the language of the database. This
issue is closely described and dealt with in section
VI-B.

B. Object oriented databases

The concept of object oriented databases as de-
scribed by Silberschatz et al. in [14] was designed
to solve the biggest issue of relational and object-
relational databases and that is transformation of the
data from typeset on the database to the typeset of
the programming language the application itself is
written in. Language used in these databases (SQL
or similar) is usually not convenient for writing
the entire application. Particularly, the user interface
is almost always written in another language. The
process of converting the data has two flaws. First
of all, it takes a substantial amount of code. That
means less lucidity and greater likelihood of an
error in the code. Also the persistence has to be
handled explicitly — when the data is modified in the
program, a routine to store them in the database has
to be called and its result evaluated. Again, it means
a lot of additional code.

Object-oriented databases are based on a concept
of persistent programming languages[14]. In these
languages the query language and other means of
data handling are integrated into the application
language, therefore the typeset of database and
application is the same—no additional conversion
is needed. Persistent programming languages are
basically standard programming languages like Java
with framework handling the persistence of some
objects. This means that there are no issues or
missing features of such databases, because they
share feature set with language of the application
and therefore all constructs and object previously
proposed can be created and used. There are, how-
ever, some features related to data storing which
should be evaluated.

Normally, objects are transient and they disap-
pear once the program is terminated. There are
four approaches how to make transient objects
persistent[14]:

e persistence by class: in this approach the whole
class is defined as persistent and all objects
of this class will be automatically stored on
the disk. This approach is not convenient for
our purposes, because we might need some



DATABASE USAGE IN WEB PAGE SEGMENTATION

temporary objects upon which many operations
need to be performed before they are ready to
be stored.

 persistence by creation: here the object is
marked to be persistent when it is created.
This approach is slightly better, but still in-
convenient for use for the same reason as the
previous one.

e persistence by marking: this is the first ap-
proach which might be used. Objects are cre-
ated as transient and they are marked as per-
sistent at any point of their life

« persistence by reachability is probably the best
option for storing DOM tree and the Tree of
Visual Areas. Here a root object is marked
as persistent and all objects become persistent
once they are reachable from this root object.
Also breaking their reachability from the root
makes them transient again. In this approach it
is possible to create nodes of the tree as fit and
after all preparations are performed on them,
they can be connected to the tree as needed
and thus made persistent. Also in this approach
it is easy to dispose larger subtree by simply
disconnecting a single node—the root of that
subtree — from the tree.

What is important in object-oriented databases
is the object identity and its persistence. Transient
objects have their identity very straightforward. The
identity corresponds with object’s position in the
memory (for example in a form of pointer to the
object). However position of persistent objects may
change in time. We need to know how to refer
to these objects when for example the program
ends and starts again later. There are four levels of
identity persistence[14]:

o within the procedure: basically no persistence
at all, local variables can be an example of this.
For our purposes it is not usable.

o within the program: this level of persistence
can be used in some specific cases described
below. In other cases it corresponds to global
variables for instance.

o between programs: this corresponds to pointers
to file system. The problem here is that these
pointers can be changed in time. That can cause
the stored tree to fall apart.

o persistent: in this case the identity survives
even data reorganization on the disk. It is,

therefore, the optimal level we can achieve.

There are also some drawbacks to using persistent
programming language[14]. The biggest one is that
programming languages used for this are usually
high-level. That means worse optimization of per-
formed operations and rather big overhead. Histor-
ically, there was also worse support of declarative
querying, but lately a significant progress has been
made in this area.

There are many implementations of object-
oriented database concept. Because Burget’s web
segmenting application is written in Java and the
proposed data structures were also designed in Java,
we’ll focus on interfaces supported there. The most
known interfaces for persisting Java objects are
JPA and JDO. However, neither of them is object-
oriented database per se, they are just interfaces for
storing Java objects in various database storages.
In addition, there is usually a problem with perfor-
mance, since the typeset conversion is done within
engines implementing these interfaces. There are
many implementations of pure Java object storage,
however with some constraining conditions like
client-server architecture, only a handful of them
remains.

One of them is NoSQL database OrientDB. It is
foremost document oriented database, but object-
oriented wrappers are provided as a part of the
project. Basically these wrappers very simply trans-
late plain Java objects to documents, which are then
stored in the database. Java reflection is used to
find information about Java objects and therefore
it doesn’t need almost any code enhancements or
proxy classes as used by JDO and JPA implemen-
tations.

Now just to list some features related to
previously described features of object-oriented
databases. OrientDB typically persists objects
by marking them as persistent. This is done
via save () method of database descriptor,
which handles persistence. Following example [15]
demonstrates both persistence by marking and per-
sistence by reachability (the newly created City
object).

String dbpath =
"remote:localhost/petshop";
ODatabaseObjectTx tx =
new ODatabaseObjectTx (dbpath);
ODatabaseObject db =



DATABASE USAGE IN WEB PAGE SEGMENTATION

tx.open ("admin", "admin");
Person p = new Person();
p.setName ("Luca");
p.setSurname ("Garulli");

db.save (p);
db.close () ;

This is perfect for our purpose, since it is possible
to build the entire tree and then mark its root
as persistent. This will store the entire tree. As
for object identity, OrientDB objects have identity
persisted on the disk along with the object data. That
means it is entirely persistent. Only a small mod-
ification in the code defining classes is necessary,
Each persisted class has to contain two Object
type properties annotated as @Id and @Version,
which will contain the object identity. The latter
one is needed only when working with transactions
to allow multi version concurrency control. As for
performance options, OrientDB offers both client-
server and embedded approach. It also offers many
option for performance tuning like cache size trans-
action tweaks, and index finetuning. It also supports
custom indexes defined on object attributes. Lazy
retrieval is supported as well as eager one. Based
on some experiments performed on proposed ob-
ject structures in the database, the only big issue
are circular dependencies between objects —they are
handled very poorly by the DB and thus they can
slow down persistence of a DOM tree by thousands
of percent. The proposed design is already modified
solution which doesn’t suffer with this.

VII. CONCLUSION

In the first half of this work, outputs of dif-
ferent vision-based segmentation algorithms have
been inspected and described in a way which brings
them closer to object-oriented tree-based approach.
Also a DOM model has been described with special
attention to those of its features which are important
to store. The last data component inspected was
the mapping between the two trees. During the
inspection of all data structures, some aspect of their
design were emphasized as potentially problematic
for storage.

In the second part, database structures were pro-
posed. Some of them were already tested and the
result represents optimized data structure set in

terms of both stored information and performance
the cache considering the main use cases. These use
cases were described prior to proposing database
structure.

Then basic features of two database approaches
convenient for storing the data identified in the
first part were outlined. Each one of proposed
database approaches has its specifics. In compar-
ison Object oriented databases offer much better
design possibilities, making most of the structural
specifics possible to design and implement. From
this point of view they are more convenient for
data storage. Of course not every language offers
the persistence extension, therefore object-oriented
approach is not always the best option. Also some
performance issues are likely to occur in compari-
son with object-relational data model. If necessary,
this model can also offer some features making
the database design needed for described structures
possible. But the final design would have several
shortcomings which would need to be compensated
by additional program code. Therefore it won’t be
the first choice in most cases. Described OO DB
engine, the OrientDB, offers all features which are
needed for this design. It also presents very simple
interface and, based on some preliminary tests, it
shows promising result in terms of performance and
scaling.

REFERENCES

[1] Cover, R.: Technology Reports: W3C Document Object Model
(DOM). 2003

[2] Cai, D.,, Yu, S., Wen, J.-R., Ma, W.-Y.: VIPS: a Vision-based
Page Segmentation Algorithm.. Microsoft technical report. MSR-
TR-2003-79. 2003

[3] Hors, A. L., Hgaret, P. L., Nicol, G., Wood, L., Champion, M.,
Byrne, S.: Document Object Model (DOM) Level 3 Document
Object Model Core. W3C Recommendation. April 2004

[4] Stenback, J., Hgaret, P. L., Hors, A. L.: Document Object
Model (DOM) Level 2 Document Object Model HTML. W3C
Recommendation. January 2003

[5] Wilson, C., Hgaret, P. L., Apparao, V.: Document Object Model
(DOM) Level 2 Style Specification. W3C Recommendation.
November 2000

[6] W3C: Document Object Model (DOM) Technical Reports
(overview)

[7]1 Hors, A. L., Wood, L., Sutor, R. S.: DOM specification, Glossary.
January 2003

[8] Petasis, G., Fragkou, P., Theodorakos, A., Karkaletsis, V., Spy-
ropoulos, C. D.: Segmenting HTML pages using visual and
semantic information. In Proceedings of the 4th Web as a Corpus
Workshop, 6th Language Resources and Evaluation Conference.
June 2008.

[9] Liu, W.,, Meng, X., Meng, W., VIiDE: A Vision-Based Approach
for Deep Web Data Extraction. IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 3. March 2010.



DATABASE USAGE IN WEB PAGE SEGMENTATION

[10] Burget, R.: Layout Based Information Extraction from HTML
Documents. The Ninth International Conference on Document
Analysis and Recognition. 2007.

[11] Tai, K. C.: The tree-to-tree correction problem. J. ACM 26(3).
1979

[12] Vieira, K., Carvalho, A. L. C., Berlt, K., Moura, E.S., Silva,
A. S., Freire, J.: On Finding Templates on Web Collections. In
Journal on World Wide Web, Volume 12 Issue 2. June 2009.

[13] EIB 3.0 Expert Group: JSR 220: Enterprise JavaBeans™,
Version 3.0; Java Persistence API. May 2006

[14] Silberschatz, A., Korth, H. F., Sudarshan, S.: Database System
Concepts, 5th edition. New York: McGraw-Hill.

[15] Garulli L. et al: http:/code.google.com/p/orient/wiki/
ObjectDatabase. Dec 2010

[16] Lin, S.H., Ho, J.M.: Discovering Informative Content Blocks
from Web Documents. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and
data mining. 2002

[17] Laber, E., Souza, C., Jabour, I., Amorim, E., Cardoso, E.: A
Fast and Simple Method for Extracting Relevant Content from
News Webpages. In Proceeding of the 18th ACM International
Conference on Information and Knowledge Management. 2009

[18] Yi, L., Liu, B., Li, X.: Eliminating noisy information in Web
Pages for Data Mining. In Proceedings of the International ACM
Conference of Knowledge Discovery and Data Mining

[19] Reis, D.C., Golgher, P.B., Silva, A.S., Laender, H.F.: Auto-
matic Web News Extraction Using Tree Edit Distance. In Pro-
ceedings of the 13th International World Wide Web Conference.
2004

[20] Valiente, G.: An Efficient Bottom-Up Distance between trees.
In Proceedings of the International Symposium on String Pro-
cessing and Information Retrieval. 2001

[21] Vieira, K., Silva, A.S., Pinto, N., Moura, E.S., Cavalcanti,
J.M.B., Freire J.: A Fast and Robust Method for Web Page
Template Detection and Removal. In Proceedings of the Acm
International Conference on Information and Knowledge Man-
agement. 2006

[22] Gottron, T.: Bridging the Gap: From Multi Document Template
Detection to Single Document Content Extraction. In Proceed-
ings of the IASTED Conference on Internet and Multimedia
Systems and Applications. 2008

[23] Vieira, K., Carvalho, A.L.C., Berlt, K., Moura, E.S., Silva,
A.S., Freire J.: On Finding Templates on Web Collections.
Springer Science + Business Media. 2009

[24] Yossef, Z.-B., Rajagopalan, S.: Template Detection via Data
Mining and its Applications. In Proceedings of the International
Conference on the World Wide Web. 2002



