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Introduction into Bayesian networks

1. Introduction into Bayes' theorem

Classical statistical models do not permit introduction of prior
knowledge into the model. For most of the purposes this is desired
behavior as it prevents introduction of extraneous data that might
skew the experimental results. However there are times when it's
useful to leverage prior knowledge as input into further evaluation
process.

Bayes' Theorem was developed by the Rev. Thomas Bayes, an
18th century mathematician and theologian, and was first published
in 1763. It can be expressed as:

P{HIC)*P(EIH.C)

P{H\E ) = PUEC)

We update our belief in hypothesis H given on additional
evidence E with background context c. Left-hand term - P(H/E,c) - is
known as "posterior probability”" or the probability of H after
considering the effect of E on c. The term P(H/c) is called the "prior
probability of H given c alone". The term P(E[/H,c) is called the
"likelihood" and gives the probability of the evidence assuming the
hypothesis H and the background information c is true. Finally, the
last term P(E/c) is independent of H and can be regarded as a
normalizing or scaling factor.
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2. Bayesian networks

2.1. Motivation

The idea of conditional probability has proved to be very useful
in real world. There are countless examples where probability of one
event is conditional on the probability of a previous one. Although it
is possible to use the sum and product rules of probability theory to
anticipate this factor of conditionality, this in many cases leads in to
NP-hard calculations.

The prospect of managing a scenario with 5 discrete random
variables (25-1=31 discrete parameters) might be manageable. An
expert system for monitoring patients with 37 variables that results
in a joint distribution of over 237 parameters would not be
manageable at all.

Bayesian network can be, for example, used to represent the
probabilistic relationships between diseases and symptoms. Given
symptoms, the network can compute the probabilities of the presence
of various diseases.

Using a Bayesian network can also save considerable amounts
of space, if the dependencies in the joint distribution are sparse. For
example storing the conditional probabilities of 10 two-valued
variables using a table requires storage space for 210 = 1024 values. If
the local distribution of no variable depends on more than 3 parent
variables, the Bayesian network representation only needs to store at
most 10 * 23 = 80 values.

Another advantage of Bayesian networks is that it is intuitively
easier for a human to understand (a sparse set of) direct
dependencies and local distributions than complete joint distribution.

2.2. Introduction

Bayesian networks are directed acyclic graphs whose nodes
represent variables, and whose missing edges encode conditional
independencies between the variables. Nodes represent random
variables - they may be observable quantities, latent variables,
unknown parameters or hypotheses. Each node is associated with a
probability function that takes as input a particular set of values for
the node's parent variables and gives the probability of the variable
represented by the node. If the parents are m Boolean variables then
the probability function could be represented by a table of 2m entries,
one entry for each possible combination of its parents being true or
false.
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Efficient algorithms exist that perform inference and learning in
Bayesian networks. Bayesian networks that model sequences of
variables (e.g. speech signals or protein sequences) are called
dynamic Bayesian networks. Generalizations of Bayesian networks
that can represent and solve decision problems under uncertainty are
called influence diagrams.

2.3. Definition

There are several equivalent definitions of a Bayesian network.
For all the following, let G = (V, E) be a directed acyclic graph (or
DAG), and let X = (Xy)vev be a set of random variables indexed by V.

2.3.1.Factorization definition

X is a Bayesian network with respect to G if its joint probability
density function (with respect to a product measure) can be written
as a product of the individual density functions, conditional on their
parent variables

p@) =[] p(@ | 2paw))

veV

where pa(v) is the set of parents of v - or in other words hose
vertices pointing directly to v via a single edge).

For any set of random variables, the probability of any member
of a joint distribution can be calculated from conditional probabilities
using the chain rule as

P(Xy=ay,...,. X, =) = [[P(Xy = 20 | X1 =201, ., X = 2)
v=1
Compare this with the definition above, which can be written
as:

P(X; =1, . Xy =) = [[P(Xy =2, | X; =2;
v=1 for each Xj which is a
parent of X,)

The difference between the two expressions is the conditional
independence of the variables from any of their non-descendents,
given the values of their parent variables.

2.3.2. Markov blanket

The Markov blanket for node A is a set of nodes composed of A's
parents, A's children and children's other parents. Therefore Markov
blanket contains all the variables that shield the node A from the rest
of the network. This means that the Markov blanket of a node is the
only knowledge needed to predict the behavior of that node.
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The values of the parents and children of a node evidently give
information about that node. However, its children's parents also
have to be included, because they can be used to explain away the
node in question.

X is a Bayesian network with respect to G if every node is
conditionally independent of all other nodes in the network, given its
Markov blanket.

2.4. Dynamical Bayesian Networks

Bayesian networks do have some limitations for functional
network inference. First, due to mathematical properties of the joint
probability distribution, it is possible to have a group of BNs which
represent exactly the same joint probability distribution, having the
same conditional dependence and independence relationships, but
which differ in the direction of some of their edges. Such a group is
called an equivalence class of Bayesian networks (the BNs below
represent an equivalence class). This creates problems in assigning
direction of causation to an interaction from an edge in a Bayesian
network.

Second, the restriction of the BN to be acyclic (also due to
mathematical properties of the joint probability distribution) is a
problem for biology-specific models, because feedback loops are a
common biological feature. A BN could not model a feedback loop
because it cannot have loops, or cycles.

Fortunately, both of these limitations can be overcome by using
dynamic Bayesian networks (DBNs). A DBN consists of representing
all variables at two (or more) points in time. Edges are drawn from
the variables at the earlier time to those at the later time.

t  t+

—

functional loop

over time
DBN

In this way, cycles over time can be represented using an
underlying acyclic DBN. For example, in the DBN on the left above, we
see that A at time t influences B at time t+1, B influences C, and C
influences A. This represents a loop over time (on right), but the DBN
has no loops. Additionally, there is no ambiguity over direction of
edges—even if an equivalence class exists for this BN, we know the
correct biological interpretation is that influence travels forward in
time, not into the past.
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2.4.1. Dynamic Bayesian Network limitations
Granularity

The modeling technique is unable to describe a problem in
which the resolution of events over time varies.

The simple solution of setting the time interval between t and
t+1 to the shortest overall period between events leads to increased
computational cost during all other parts of the evaluation.

Abstract Temporal Relationships

Abstract concepts such as precedence (“A comes before B.”)
cannot be expressed in this kind of model.
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3. Bayesian Networks examples

3.1. Rainy day tomorrow?

Given a situation where it might rain today, and might rain
tomorrow, what is the probability that it will rain on both days? Rains
on two consecutive days are not independent events with isolated
probabilities. If it rains on one day, it is more likely to rain the next.
Solving such a problem involves determining the chances that it will
rain today, and then determining the chance that it will rain
tomorrow conditional on the probability that it will rain today. These
are known as "joint probabilities." Suppose that P(rain today) = 0.20
and P(rain tomorrow given that it rains today) = 0.70. The probability
of such joint events is determined by:

P(B, E;) = P(E) P(E,E)

which can also be expressed as:

P(E, E,)
P(E)

Working out the joint probabilities for all eventualities, the
results can be expressed in a table format:

P(E)E) =

Rain No rain Marginal
tomorrow tomorrow probability of
rain tomorrow
Raid today 0.14 0.06 0.20
No raid today 0.16 0.64 0.80
Marginal 0.30 0.70
probability of
raid tomorrow

From the table, it is evident that the joint probability of rain
over both days is 0.14. There was a great deal of other information
that had to be brought into the -calculations before such a
determination was possible. With only two discrete binary variables
four calculations were required.

This same scenario can be expressed using a Bayesian Network
Diagram as shown ("!" is used to denote logical "not").
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One of the attractive properties of Bayesian networks is that
once they form directed acyclic graph they can be browsed using
depth-first algorithm. Then we have to calculate only the branches we
are interested in - in our case P(E1), P(E2|E1) and P(E2,E1).

We can also utilize the graph both visually and algorithmically
to determine which parameters are independent of each other.
Instead of calculating four joint probabilities, we can use the
independence of the parameters to limit our calculations to two. It is
self-evident that the probabilities of rain on the second day having
rained on the first are completely autonomous from the probabilities
of rain on the second day having not rained on the first.

At the same time as emphasizing parametric indifference,
Bayesian Networks also provide a parsimonious representation of
conditionality among parametric relationships. While the probability
of rain today and the probability of rain tomorrow are two discrete
events (it cannot rain both today and tomorrow at the same time),
there is a conditional relationship between them (if it rains today, the
lingering weather systems and residual moisture are more likely to
result in rain tomorrow). For this reason, the directed edges of the
graph are connected to show this dependency.

3.2. Burglary alarm

Friedman and Goldszmidt suggest looking at Bayesian
Networks as a "story". They offer the example of a story containing
five random variables: "Burglary”, "Earthquake", "Alarm", "Neighbour
Call", and "Radio Announcement”. In such a story, Burglary" and
"Earthquake" are independent, and "Burglary" and "Radio
Announcement"” are independent given "Earthquake." This is to say
that there is no event that affects both burglaries and earthquakes. As
well, "Burglary" and "Radio Announcements" are independent given
"Earthquake" - meaning that while a radio announcement might
result from an earthquake, it will not result as a repercussion from a
burglary.
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Because of the independence among these variables, the
probability of P(A,RE,B) (The joint probability of an alarm, radio
announcement, earthquake and burglary) can be reduced from:

P(ARE,B)=P(A|R,E,B)*P(R|E,B)*P(E|B)*P(B)
involving 15 parameters to 8:
P(ARE,B) = P(A|E,B)*P(R|E)*P(E)*P(B)

This significantly reduced the number of joint probabilities
involved. This can be represented as a Bayesian Network:

(f Neighbour -
- Call —

—_——

Using a Bayesian Network offers many advantages over
traditional methods of determining causal relationships.
Independence among variables is easy to recognize and isolate while
conditional relationships are clearly delimited by a directed graph
edge: two variables are independent if all the paths between them are
blocked (given the edges are directional). Not all the joint
probabilities need to be calculated to make a decision; extraneous
branches and relationships can be ignored (One can make a
prediction of a radio announcement regardless of whether an alarm
sounds). By optimizing the graph, every node can be shown to have at
most k parents. The algorithmic routines required can then be run in
O(2kn) instead of O(2n) time. In essence, the algorithm can run in
linear time (based on the number of edges) instead of exponential
time (based on the number of parameters).

Associated with each node is a set of conditional probability
distributions. For example, the "Alarm" node might have the following
probability distribution:

Probability Distribution for the Alarm Node given the events
of "Earthquakes" and "Burglaries” ("!" denotes "not")
Earthquake Burglary P(AJE,B) P('A|E,B)
E B 0.90 0.10
E 'B 0.20 0.80
'E B 0.90 0.10
lE 'B 0.01 0.99

- 1n _
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For example, should there be both an earthquake and a
burglary, the alarm has a 90% chance of sounding. With only an
earthquake and no burglary, it would only sound in 20% of the cases.
A burglary unaccompanied by an earthquake would set off the alarm
90% of the time, and the chance of a false alarm given no antecedent
event should only have a probability of 0.1% of the time. Obviously,
these values would have to be determined a posteriori.

_ 11
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4. Inference and learning

One of the main usages of Bayesian networks is, based on a
newly introduced evidence, to update the probability that a
hypothesis may be true.

There are three main inference tasks for Bayesian networks:

4.1. Inferring unobserved variables

Because a Bayesian network is a complete model for the
variables and their relationships, it can be used to answer
probabilistic queries about them. For example, the network can be
used to find out updated knowledge of the state of a subset of
variables when other variables (the evidence variables) are observed.
This process of computing the posterior distribution of variables
given evidence is called probabilistic inference.

The posterior gives a universal sufficient statistic for detection
applications, when one wants to choose values for the variable subset
that minimize some expected loss function, for instance the
probability of decision error. A Bayesian network can thus be
considered a mechanism for automatically applying Bayes' theorem to
complex problems.

The most common exact inference methods are: variable
elimination, which eliminates (by integration or summation) the non-
observed non-query variables one by one by distributing the sum
over the product; clique tree propagation, which caches the
computation so that many variables can be queried at one time and
new evidence can be propagated quickly; and recursive conditioning,
which allows for a space-time tradeoff and matches the efficiency of
variable elimination when enough space is used. All of these methods
have complexity that is exponential in the network's tree width. The
most common approximate inference algorithms are stochastic MCMC
(Markov Chain Monte Carlo) simulation, mini-bucket elimination that
generalizes loopy belief propagation, and variation methods.

4.2. Parameter learning

In order to fully specify the Bayesian network and thus fully
represent the joint probability distribution, it is necessary to specify
for each node X the probability distribution for X conditional upon X 's
parents. The distribution of X conditional upon its parents may have
any form. It is common to work with discrete or Gaussian
distributions since that simplifies calculations. Sometimes only
constraints on a distribution are known; one can then use the
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principle of maximum entropy to determine a single distribution, the
one with the greatest entropy given the constraints.

Often these conditional distributions include parameters that
are unknown and must be estimated from data, sometimes using the
maximum likelihood approach. Direct maximization of the likelihood
(or of the posterior probability) is often complex when there are
unobserved variables. A classical approach to this problem is the
expectation-maximization algorithm which alternates computing
expected values of the unobserved variables conditional on observed
data, with maximizing the complete likelihood (or posterior)
assuming that previously computed expected values are correct.
Under mild regularity conditions this process converges on maximum
likelihood (or maximum posterior) values for parameters.

A more fully Bayesian approach to parameters is to treat
parameters as additional unobserved variables and to compute a full
posterior distribution over all nodes conditional upon observed data,
then to integrate out the parameters. This approach can be expensive
and lead to large dimension models, so in practice classical
parameter-setting approaches are more common.

4.3. Structure learning

In the simplest case, a Bayesian network is specified by an
expert and is then used to perform inference. In other applications
the task of defining the network is too complex for humans. In this
case the network structure and the parameters of the local
distributions must be learned from data.

Automatically learning the graph structure of a Bayesian
network is a challenge pursued within machine learning. The basic
idea goes back to a recovery algorithm developed by Rebane and
Pearl and rests on the distinction between the three possible types of
adjacent triplets allowed in a directed acyclic graph (DAG):

1. X=Y—1Z

2. X<Y—1Z

3. X=Y<1Z
Type 1 and type 2 represent the same dependencies (X and Z
are independent given Y) and are, therefore, indistinguishable. Type
3, however, can be uniquely identified, since X and Z are marginally
independent and all other pairs are dependent. Thus, while the

skeletons (the graphs stripped of arrows) of these three triplets are
identical, the directionality of the arrows is partially identifiable.

-1
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The same distinction applies when X and Z have common
parents, except that one must first condition on those parents.
Algorithms have been developed to systematically determine the
skeleton of the underlying graph and, then, orient all arrows whose
directionality is dictated by the conditional independencies observed.

An alternative method of structural learning uses optimization-
based search. It requires a scoring function and a search strategy. A
common scoring function is posterior probability of the structure
given the training data. The time requirement of an exhaustive search
returning back a structure that maximizes the score is super-
exponential in the number of variables.

A local search strategy makes incremental changes aimed at
improving the score of the structure. A global search algorithm like
MCMC can avoid getting trapped in local minima.

- 14 _
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5. Practical Uses for Bayesian Networks

5.1. AutoClass

The National Aeronautic and Space Administration have a large
investment in Bayesian research. NASA's Ames Research Center is
interested in deep-space exploration and knowledge acquisition. In
gathering data from deep-space observatories and planetary probes,
an apriori imposition of structure or pattern expectations is
inappropriate. Researchers do not always know what to expect or
even have hypotheses for which to test when gathering such data.
Bayesian inference is useful because it allows the inference system to
construct its own potential systems of meaning upon the data. Once
any implicit network is discovered within the data, the juxtaposition
of this network against other data sets allows for quick and efficient
testing of new theories and hypotheses.

The AutoClass project is an attempt to create Bayesian
applications that can automatically interpolate raw data from
interplanetary probes, and deep space explorations. A graphical
example of AutoClass's capabilities is displayed bellow - it's an
AutoClass interpolation of raw data with no predefined categories.

AUTOMATIC CLASS DISCQVERY
Before Alter

An AutoClass interpolation of raw data with no predefined
categories. Sorted data is grouped by colour and shape. The top area
is sorted into green-blue shapes, the middle into blues, and the
bottom into red-orange-yellow shapes.

An applied example of AutoClass's capabilities was the input of
infrared spectra. Although no differences among this spectra were
initially suspected, AutoClass successfully distinguished two
subgroups of stars.

- 18 _
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The difference is confirmed by looking at their positions on this
map of the galaxy (one subgroup is clearly located near galactic plane
while the other seems to be distributed more uniformly)

5.2 Introduction of Search Heuristics

Searching for a solution to a problem is usually an NP-hard
problem resulting in a combinatorial explosion of possible solutions
to investigate. This problem is often ameliorated through the use of
heuristics, or sub-routines to make "intelligent" choices along the
decision tree. An appropriately defined heuristic can quicken the
search by eliminating obviously unsuccessful paths from the search
tree. An inappropriately defined heuristic might eliminate the
successful solutions and result in no evident solution.

Bayesian networks can replace heuristic methods by
introducing a method where the probabilities are updated continually
during search.

One class of search algorithms called stochastic searching
utilizes what are known as "Monte-Carlo" procedures. These
procedures are non-deterministic and do not guarantee a solution to
a problem. As such they are very fast, and repeated use of these
algorithms will add evidence that a solution does not exist even
though they never prove that such a solution is non-existent.

5.3. Lumiere

The Lumiere project at Microsoft Research was initiated in
1993 with the goal of developing methods and an architecture for
reasoning about the goals and needs of software users as they work
with software. At the heart of Lumiere are Bayesian models that
capture the uncertain relationships between the goals and needs of a
user and observations about program state, sequences of actions over
time, and words in a user's query (when such a query has been made).

- 1A _
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Ancestors of Lumiere included earlier research on probabilistic
models of user goals to support the task of custom-tailoring
information displayed to pilots of commercial aircraft, and related
work on user modeling for the decision-theoretic control of displays
that led to systems that modulate data displayed to flight engineers at
the NASA Mission Control Center.

Early on in the Lumiere project, studies were performed in the
Microsoft usability labs to investigate key issues in determining how
best to assist a user as they worked. The studies were aimed at
exploring how experts in specific software applications worked to
understand problems that users might be having with software from
the user's behaviors.

The Office Assistant in the Office '97 and Office 2003 product
suites was based in spirit on the Lumiere and on prior research
efforts that had led to the Answer Wizard help retrieval system in
Office '95. Office committed to a character-based assistant. Users
were able to choose one of several assistants each of whom had a
variety of behavioral patterns - all of whom draw their ability to
interpret context and natural language queries from Bayesian user
models.

17
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6. Limitations of Bayesian Networks

In spite of their remarkable power and potential to address
inferential processes, there are some inherent limitations and
liabilities to Bayesian networks.

In reviewing the Lumiere project, one potential problem that is
seldom recognized is the remote possibility that a system's user
might wish to violate the distribution of probabilities upon which the
system is built. While an automated help desk system that is unable to
embrace unusual or unanticipated requests is merely frustrating, an
automated navigation system that is unable to respond to some
previously unforeseen event might put an aircraft and its occupants in
mortal peril. While these systems can update their goals and
objectives based on prior distributions of goals and objectives among
sample groups, the possibility that a user will make a novel request
for information in a previously unanticipated way must also be
accommodated.

Two other problems are more serious. The first is the
computational difficulty of exploring a previously unknown network.
To calculate the probability of any branch of the network, all branches
must be calculated. While the resulting ability to describe the network
can be performed in linear time, this process of network discovery is
an NP-hard task which might either be too costly to perform, or
impossible given the number and combination of variables.

The second problem centers on the quality and extent of the
prior beliefs used in Bayesian inference processing. A Bayesian
network is only as useful as this prior knowledge is reliable. Either an
excessively optimistic or pessimistic expectation of the quality of
these prior beliefs will distort the entire network and invalidate the
results. Related to this concern is the selection of the statistical
distribution induced in modeling the data. Selecting the proper
distribution model to describe the data has a notable effect on the
quality of the resulting network.
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7. Conclusion

These concerns aside, Bayesian networks have incredible
power to offer assistance in a wide range of endeavors. They support
the use of probabilistic inference to update and revise belief values.
Bayesian networks readily permit qualitative inferences without the
computational inefficiencies of traditional joint probability
determinations. In doing so, they support complex inference modeling
including rational decision making systems, value of information and
sensitivity analysis. As such, they are useful for causality analysis and
through statistical induction they support a form of automated
learning. This learning can involve parametric discovery, network
discovery, and causal relationship discovery.

7.1. Usage of Bayesian Networks in my thesis

My thesis will focus on effective generation of test cases,
running them and evaluating results - all in context of metamodel
repository. I plan to use Bayesian algorithms and networks for
several important parts of overall work.

7.1.1. Model verification

Testing results (test success/failure) will be evaluated by
software "probes" injected into standard environment - e.g.
monitoring transferred messages or RPC calls.

These probes are to be used to monitor also real-world traffic.
Gathered data can be then used in combination of Bayesian structure
learning to identify potential discrepancies from manually created
model.

7.1.2.Test case generation and evaluation

Typical model consists of several more or less interconnected
entities with attributes. Based only on the model itself there is
(except some very rare special cases) virtually infinite number of
potential test cases.

Bayesian network will be trained from real-world traffic and/or
manually to generate the most real-world-like test cases. Also it can
be used to evaluate tests failures inter-dependencies to help to
identify potential problem (e.g. which entity in model is most
probably to fail).

- 10 _



