
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

MACHINE LEARNINGALGORITHMS FORDYNAMIC
DIFFICULTY IN GAMES
ESSAY

AUTHOR Ing. OLENA PASTUSHENKO
AUTOR PRÁCE

BRNO 2018

Contents

1 Introduction 3

2 Machine learning 4
2.1 Real-life examples of machine learning application 4
2.2 Classification . 7
2.3 Regression . 9
2.4 Clustering . 9
2.5 Dimensionality reduction . 9
2.6 Errors . 10
2.7 Unified modeling language . 10

2.7.1 Class diagrams . 11
2.7.2 Object diagrams . 11
2.7.3 Activity diagrams . 12
2.7.4 State diagrams . 12

2.8 Python for Machine Learning . 14

3 Dynamic difficulty adjustment 15
3.1 Progressive difficulty . 17
3.2 Machine learning algorithms for dynamic difficulty 18

4 Conclusion 19

Bibliography 20

2

Chapter 1

Introduction

In every job that must be done, there is an element of fun.
You find the fun, and - SNAP - the job’s a game!

Mary Poppins

Training and development has been approached in many ways to deal with specific
learning objectives. From physical training manuals, to training videos and eLearning
units, every medium has its strengths and weaknesses. The lynchpin that determines the
success of any training effort is engagement. Increasing students’ motivation is an essential
task during the educational process. One of the possible ways how to achieve this is to
use innovative educational mechanics, such as gamification or serious games. Gamifica-
tion provides an opportunity to extend regular learning management systems and virtual
learning environments with game-like elements, such as points, levels, and meaningful nar-
rative. With a serious game initiative, the learning content is delivered in a game-based
environment.

To make these approaches even more personalized and effective, Machine Learning (ML)
usage might be considered. General information about ML, main tasks and real-life exam-
ples are in Chapter 2. This chapter is mainly based on the information from the book

”Designing machine learning systems with Python“ [6].
The next Chapter 3 describes one of the possible ML applications - dynamic difficulty

adjustment. To make the game (or a gamified assignment) interesting for a player it is
important to keep their attention and engagement in a state of flow. In order to achieve
this, tasks should have increasing difficulty, adjusting to the new mastered skills of the
user. Since all users have different learning curves, static difficulty changes will not work
for everyone. That’s why ML are useful here in order to classify users skills level and
adjust the difficulty accordingly. A lot of this chapter is based on a research in [9], which
studies general theory around dynamic difficulty, without particular application to gamified
educational assignments.

3

Chapter 2

Machine learning

Machine Learning (ML) is a branch of computer science where you build models using
available data. ML systems are widely used in various areas of our nowadays lives, such as:
health-care, applied physics, nutrition research, economic modeling, analytics [6].

A task is a specific activity conducted over a period of time. There are human tasks, such
as planning, designing and implementing. And also machine tasks, such as classification,
regression and etc). And one of the goals of designing ML systems is to delegate as much
tasks as possible to a machine. It might be challenging to match real problems to ML tasks.

Machine learning tasks occur in three broad settings:

∙ Supervised learning: The goal here is to learn a model from labeled training data that
allows predictions to be made on unseen future data.

∙ Unsupervised learning: Here we deal with unlabeled data and our goal is to find
hidden patterns in this data to extract meaningful information.

∙ Reinforcement learning: The goal here is to develop a system that improves its per-
formance based on the interactions it has with its environment. This usually involves
a reward signal. This is similar to supervised learning, except that rather than having
a labeled training set, reinforcement learning uses a reward function to continually
improve its performance.

2.1 Real-life examples of machine learning application
Early famous ML examples include, for example, the Mr Clippy office assistant, who was
included in the early versions of the Microsoft office suite. That one is considered to be not
a successful ML algorithm, because a lot of users found it annoying. Though, it was more
of a design failure, that an algorithm mistake.

The next list shows just some of the enormous possibilities of ML applications.

∙ Google Search Engine.1 In 2015, Google introduced RankBrain – a machine learn-
ing algorithm used to decipher the semantic content of a search query. Through the
use of an intuitive neural network, RankBrain identifies the intent behind a user’s
search and offers them tailored information on that particular topic. RankBrain now
handles around 15 percent of Google’s daily queries, working out the intent behind
never before seen searches much faster than the previous old rules-based system.

1https://www.google.com

4

∙ Siri. Voice recognition systems such as Siri2 and Cortana3 use machine learning and
deep neural networks to imitate human interaction. As they progress, these apps
will learn to ‘understand’ the nuances and semantics of our language (Fig. 2.1). For
example, Siri can identify the trigger phrase ‘Hey Siri’ under almost any condition
through the use of probability distributions. By selecting appropriate speech segments
from a recorded database, the software can then choose responses that closely resemble
real-life conversation.

Figure 2.1: Explanation of how Siri voice decoder works. Image source:
https://www.slideshare.net/shilman/ignite-seoul-machine-learning
.

∙ Uber.4 ML is a fundamental part of the Uber model5. The tech giant uses these
algorithms to determine arrival times, pick-up locations, and UberEATS’ delivery
estimations. When you book a car, Uber’s aim is to estimate its arrival time as
accurately as possible. Machine learning enables it to do this by analysing data from
millions of previous trips and applying it to your specific situation. The same goes for
UberEATS, which takes thing such as food preparation time into account to give you
the best possible prediction of delivery time. The real-time analysis of these datasets
has improved Uber’s estimations by 26 percent and increased customer satisfaction
in the process.

∙ PayPal uses machine learning algorithms to detect and combat fraud. By implement-
ing deep learning techniques, PayPal can analyse vast quantities of customer data and
evaluate risk in a far more efficient manner. Traditionally, fraud detection algorithms
have dealt with very linear results: fraud either has or hasn’t occurred. But with ma-
chine learning and neural networks, PayPal is able to draw upon financial, machine,

2https://www.apple.com/ios/siri/
3https://www.microsoft.com/en-us/cortana
4http://uber.com
5https://eng.uber.com/michelangelo/

5

and network information to provide a deeper understanding of a customer’s activity
and motives.

∙ Spotify6 uses machine learning to figure out users likes and dislikes and provides them
with a list of related tracks. In its Discover Weekly promotion, Spotify rounds up
30 tracks it thinks a user should listen to and delivers them in one easy-to-navigate
playlist. These songs are all ‘hand-picked’ by machine learning algorithms, which
analyse user activity and match their tastes to music with similar meta-tags.

∙ Data Mining. Just to give a brief overview of ML possibilities in Data Mining,
I’d like to describe the research [1] which studied the expression of emotion in 20th
century books. With access to a large volume of digitized text through the project
Gutenberg digital library, WordNet7, and Google’s Ngram database 8, the authors
of this study were able to map cultural change over the 20th century as reflected
in the literature of the time. They did this by mapping trends in the usage of the
mood words. The results are quite interesting. For example, Figure 2.2 shows the
joy-sadness score for books written in the period of 1900-2000 years, and it clearly
shows a negative trend associated with the period of World War II.

Figure 2.2: Joy-Sadness expressions ratio retrieved from the books written in 1900-2000
years. Image source: [1]

6https://www.spotify.com/us/
7http://wordnet.princeton.edu/wordnet/
8books.google.com/ngrams

6

2.2 Classification
Major machine learning tasks can be divided into several groups (Fig. 2.3).

Figure 2.3: What type of task is appropriate for different machine learning problems[6].
.

Classification is probably the most common type of task; this is due in part to the fact
that it is relatively easy, well understood, and solves a lot of common problems.Classification
is about assigning classes to a set of instances, based on their features. This is a supervised
learning method because it relies on a labeled training set to learn a set of model parameters.
This model can then be applied to unlabeled data to make a prediction on what class each
instance belongs to. There are broadly two types of classification tasks: binary classification
and multiclass classification. A typical binary classification task is e-mail spam detection.
Here we use the contents of an e-mail to determine if it belongs to one of the two classes:
spam or not spam.

An example of multiclass classification is handwriting recognition, where we try to
predict a class, for example, the letter name. In this case, we have one class for each
of the alpha numeric characters. Multiclass classification can sometimes be achieved by
chaining binary classification tasks together, however, we lose information this way, and we
are unable to define a single decision boundary. For this reason, multiclass classification is
often treated separately from binary classification.

In this research Classification would be investigated and discussed with more details,
because this task is going to be needed for further steps. The information in this section is
mainly based on the research [8].

Supervised classification is one of the tasks most frequently carried out by so-called In-
telligent Systems. Thus, a large number of techniques have been developed based on Artifi-
cial Intelligence (Logical/Symbolic techniques), Perceptron-based techniques and Statistics
(Bayesian Networks, Instance-based techniques).

7

Inductive machine learning is the process of learning a set of rules from instances (ex-
amples in a training set), or more generally speaking, creating a classifier that can be used
to generalize from new instances. The process of applying supervised ML to a real-world
problem is described in Figure 2.4.

Figure 2.4: The process of supervised ML.

The first step is collecting the dataset. If a requisite expert is available, then s/he could
suggest which fields (attributes, features) are the most informative. If not, then the simplest
method is that of “brute-force,” which means measuring everything available in the hope
that the right (informative, relevant) features can be isolated. However, a dataset collected
by the “brute-force” method is not directly suitable for induction. It contains in most cases
noise and missing feature values, and therefore requires significant pre-processing.

The second step is the data preparation and data pre- processiong. Depending on the
circumstances, researchers have a number of methods to choose from to handle missing data.
These researchers have identified the techniques’ advantages and disadvantages. Instance
selection is not only used to handle noise but to cope with the infeasibility of learning
from very large datasets. Instance selection in these datasets is an optimization problem
that attempts to maintain the mining quality while minimizing the sample size. It reduces
data and enables a data mining algorithm to function and work effectively with very large
datasets. There is a variety of procedures for sampling instances from a large dataset.

8

Feature subset selection is the process of identifying and removing as many irrelevant and
redundant features as possible. This reduces the dimensionality of the data and enables
data mining algorithms to operate faster and more effectively. The fact that many features
depend on one another often unduly influences the accuracy of supervised ML classification
models. This problem can be addressed by constructing new features from the basic feature
set. This technique is called feature construction/transformation. These newly generated
features may lead to the creation of more concise and accurate classifiers. In addition, the
discovery of meaningful features contributes to better comprehensibility of the produced
classifier, and a better understanding of the learned concept.

2.3 Regression
There are cases where what we are interested in are not discrete classes, but a continuous
variable, for instance, a probability. These types of problems are regression problems. The
aim of regression analysis is to understand how changes to the input, independent variables,
effect changes to the dependent variable. The simplest regression problems are linear and
involve fitting a straight line to a set of data in order to make a prediction. This is usually
done by minimizing the sum of squared errors in each instance in the training set. Typical
regression problems include estimating the likelihood of a disease given a range and severity
of symptoms, or predicting test scores given past performance.

2.4 Clustering
Clustering is the most well known unsupervised method. Here, we are concerned with
making a measurement of similarity between instances in an unlabeled dataset. We often
use geometric models to determine the distance between instances, based on their feature
values. We can use an arbitrary measurement of closeness to determine what cluster each
instance belongs to. Clustering is often used in data mining and exploratory data analysis.
There are a large variety of methods and algorithms that perform this task, and some of
the approaches include the distance based method, as well as finding a center point for each
cluster, or using statistical techniques based on distributions.

2.5 Dimensionality reduction
Many data sets contain a large number of features or measurements associated with each
instance. This can present a challenge in terms of computational power and memory al-
location. Also many features may contain redundant information or information that is
correlated to other features. In these cases, the performance of our learning model may be
significantly degraded.

Dimensionality reduction is most often used in feature prepossessing; it compresses the
data into a lower dimension sub space while retaining useful information. Dimensional-
ity reduction is also used when we want to visualize data, typically by projecting higher
dimensions onto one, two, or three dimensions.

9

2.6 Errors
In machine learning systems, software flaws can have very serious real world consequences;
what happens if an algorithm, embedded in an assembly line robot, classifies a human as a
production component? Clearly, in critical systems, it is needed to plan for failure. There
should be a robust fault and error detection procedure embedded in the design process and
systems.

Sometimes it is necessary to design very complex systems simply for the purpose of
debugging and checking for logic flaws. It may be necessary to generate data sets with
specific statistical structures, or create artificial humans to mimic an interface. For example,
developing a methodology to verify that the logic of the design is sound at the data, model,
and task levels.

Errors can be hard to track, but is always needed to assume that there are errors in
the system and try to prove otherwise. It is needed to be able to capture, in the models,
the ability to learn from an error. Consideration must be given to how we select our test
set, and in particular, how representative it is of the rest of the dataset. For instance, if it
is noisy compared to the training set, it will give poor results on the test set, suggesting
that the model is overfitting, when in fact, this is not the case. To avoid this, a process
of cross validation is used. This works by randomly dividing the data into, for example,
ten chunks of equal size. We use nine chunks for training the model and one for testing.
We do this 10 times, using each chunk once for testing. Finally, we take an average of test
set performance. Cross validation is used with other supervised learning problems besides
classification, but unsupervised learning problems need to be evaluated differently.

With an unsupervised task we do not have a labeled training set. Evaluation can
therefore be a little tricky since we do not know what a correct answer looks like. In a
clustering problem, for instance, we can compare the quality of different models by measures
such as the ratio of cluster diameter compared to the distance between clusters. However,
in problems of any complexity, we can never tell if there is another model, not yet built,
which is better.

2.7 Unified modeling language
Machine learning systems can be complex. It is often difficult for a human brain to under-
stand all the interactions of a complete system. We need some way to abstract the system
into a set of discrete functional components. This enables us to visualize our system’s
structure and behavior with diagrams and plots.

Unified modeling language (UML) is a formalism that allows us to visualize and com-
municate our design ideas in a precise way. We implement our systems in code, and the
underlying principles are expressed in mathematics, but there is a third aspect, which is, in
a sense, perpendicular to these, and that is a visual representation of our system. The pro-
cess of drawing out your design helps conceptualize it from a different perspective. Perhaps
we could consider trying to triangulate a solution.

Conceptual models are theoretical devices for describing elements of a problem. They
can help us clarify assumptions, prove certain properties, and give us a fundamental un-
derstanding of the structures and interactions of systems. UML arose out of the need to
both simplify this complexity and allow our designs to be communicated clearly and un-
ambiguously to team members, clients, and other stakeholders. A model is a simplified
representation of a real system. Here, we use the word model in a more general sense,

10

as compared to its more precise machine learning definition. UML can be used to model
almost any system imaginable. The core idea is to strip away any irrelevant and potentially
confusing elements with a clear representation of core attributes and functions.

2.7.1 Class diagrams

The class diagram models the static structure of a system. Classes represent abstract
entities with common characteristics. They are useful because they express, and enforce,
an object-oriented approach to our programming. We can see that by separating distinct
objects in our code, we can work more clearly on each object as a self-contained unit. We
can define it with a specific set of characteristics, and define how it relates to other objects.
This enables complex programs to be broken down into separate functional components.
It also allows us to subclass objects via inheritance. This is extremely useful and mirrors
how we model the particularly hierarchical aspect of our world (that is, programmer is a
subclass of human, and Python programmer is a subclass of programmer).

Object programming can speed up the overall development time because it allows the
reuse of components. There is a rich class library of developed components to draw upon.
Also, the code produced tends to be easier to maintain because we can replace or change
classes and are able to (usually) understand how this will affect the overall system.

In truth, object coding does tend to result in a larger code base, and this can mean that
programs will be slower to run. In the end, it is not an ”either, or“ situation. For many
simple tasks, you probably do not want to spend the time creating a class if you may never
use it again. In general, if you find yourself typing the same bits of code, or creating the
same type of data structures, it is probably a good idea to create a class.

The big advantage of object programming is that we can encapsulate the data and the
functions that operate on the data in one object. These software objects can correspond in
quite a direct way with real world objects. Designing object-oriented systems may take some
time, initially. However, while establishing a workable class structure and class definitions,
the coding tasks required to implement the class becomes clearer.

Creating a class structure can be a very useful way to begin modeling a system. When
we define a class, we are interested in a specific set of attributes, as a subset of all possible
attributes or actual irrelevant attributes. It should be an accurate representation of a real
system, and we need to make the judgment as to what is relevant and what is not (Fig.
2.5). This is difficult because real world phenomena are complex, and the information we
have about the system is always incomplete. We can only go by what we know, so our
domain knowledge (the understanding of the system(s) we are trying to model), whether it
be a software, natural, or human, is critically important.

2.7.2 Object diagrams

Object diagrams (Fig. 2.6) are a logical view of the system at runtime. They are a snapshot
at a particular instant in time and can be understood as an instance of a class diagram.
Many parameters and variables change value as the program is run, and the object di-
agram’s function is to map these. This runtime binding is one of the key things object
diagrams represent. By using links to tie objects together, we can model a particular run-
time configuration. Links between objects correspond to associations between the objects
class. So, the link is bound by the same constraints as the class that it enforces on its
object.

11

Figure 2.5: The example of a class diagram.

Figure 2.6: The example of an object diagram.

2.7.3 Activity diagrams

The purpose of an activity diagram is to model the system’s work flow by chaining together
separate actions that together represent a process. They are particularly good at modeling
sets of coordinated tasks. Activity diagrams are one of the most used in the UML specifica-
tion because they are intuitive to understand as their formats are based on traditional flow
chart diagrams. The main components of an activity diagram are actions, edges (sometimes
called paths) and decisions. Actions are represented by rounded rectangles, edges are rep-
resented by arrows, and decisions are represented by a diamond. Activity diagrams usually
have a start node and an end node. An example of the activity diagram is on Figure 2.7.

2.7.4 State diagrams

State diagrams are used to model systems that change behavior depending on what state
they are in. They are represented by states and transitions. States are represented by
rounded rectangles and transitions by arrows. Each transition has a trigger, and this is
written along the arrow. Many state diagrams will include an initial pseudo state and a
final state. Pseudo states are states that control the flow of traffic. Another example is the
choice pseudo state. This indicates that a Boolean condition determines a transition. A
state transition system consists of four elements; they are as follows:

∙ S = s1, s2, . . . : A set of states

∙ A = a1, a2, ...: A set of actions

∙ E = e1, e2, ...: A set of events

∙ y: S(A U E)->2s: A state transition function

The first element, S, is the set of all possible states the world can be in. Actions are the
things an agent can do to change the world. Events can happen in the world and are not

12

Figure 2.7: The example of an activity diagram.

under the control of an agent. The state transition function, y, takes two things as input: a
state of the world and the union of actions and events. This gives us all the possible states
as a result of applying a particular action or event.

Consider that we have a warehouse that stocks three items. We consider the warehouse
only stocks, at most, one of each item. We can represent the possible states of the warehouse
by the matrix (Fig. 2.8).

Figure 2.8: Matrix representation of the warehouse possible states.

This can define similar binary matrices for E, representing the event sold, and A, which
is an action order. In this simple example, our transition function is applied to an instance
(s, which is a column in S), which is s’ = s + a - e, where s’ is the system’s final state, s
is its initial state, and a and e are an activity and an event respectively. We can represent
this with the transition diagram (Fig. 2.9).

13

Figure 2.9: Transition diagram example.

2.8 Python for Machine Learning
Python is a versatile general purpose programming language. It is an interpreted language
and can run interactively from a console. It does not require a compiler like C++ or Java,
so the development time tends to be shorter. It is available for free download and can be
installed on many different operating systems including UNIX, Windows, and Macintosh.
It is especially popular for scientific and mathematical applications.

Python is relatively easy to learn compared to languages such as C++ and Java, with
similar tasks using fewer lines of code. Python is not the only platform for machine learning,
but it is certainly one of the most used. One of its major alternatives is R. Like Python, it
is open source, and while it is popular for applied machine learning, it lacks the large devel-
opment community of Python. R is a specialized tool for machine learning and statistical
analysis. Python is a general-purpose, widely-used programming language that also has
excellent libraries for machine learning applications. Another alternative is Matlab. Unlike
R and Python, it is a commercial product. As would be expected, it contains a polished
user interface and exhaustive documentation. Like R, however, it lacks the versatility of
Python.

Python is such an incredibly useful language that your effort to learn it, compared to the
other platforms, will provide far greater pay-offs. It also has excellent libraries for network,
web development, and microcontroller programming. These applications can complement
or enhance your work in machine learning, all without the pain of clumsy integrations and
the learning or remembering of the specifics of different languages.

Python comes equipped with a large library of packages for machine learning tasks.
They are not monolithic structures like you would expect from a commercial product,
and therefore, understanding the various package taxonomies can be confusing. However,
the diversity of approaches of open source software, and the fact that ideas are being
contributed continually, give it an important advantage. However, the evolving quality of
open source software has its down side, especially for ML applications. For example, there
was considerable reluctance on behalf of the Python machine learning user community to
move from Python 2 to 3. Because Python 3 broke backwards compatibility; importantly, in
terms of its numerical handling, it was not a trivial process to update the relevant packages.

14

Chapter 3

Dynamic difficulty adjustment

Video games are designed to generate engaging experiences: suspenseful horrors, whimsical
amusements, fantastic adventures. But unlike films, books, or televised media in which
often have similar experiential goals, video games are interactive. Players create meaning
by interacting with the games internal systems [5].

Game developers iteratively refine these systems based on play testing feedback and
tweaking behaviors and settings until the game is balanced. While balancing, they often
analyze systems intuitively by tracking specific identifiable patterns or types of dynamic
activity. It is a difficult and time consuming process [10].

One of the challenges that a computer game developer faces when creating a new game
is getting the difficulty “right”. Providing a game with an ability to automatically scale the
difficulty depending on the current player would make the games more engaging over longer
time. In recent years there was an increasing interest in researching how video games can
adjust themselves to their players. The aim of this research is to create such an algorithm
which might be applied to an educational gamified task assignment. The goal is generally
to keep players’ attention for as long as it is reasonable. What is a certain way to lose their
attention? A straightforward answer is for a game to be boring, be it because of a trivial
story, lack of excitement, repetitive too difficult or too easy challenges, etc.

A game might be considered as an interaction between players and their opponent. In
this context, assuming their goals are mutually exclusive, difficulty adjustment consists of
tuning the skill of the opponent to match the skill of the player. It is possible to estimate
the latter and adjust the former based on ranking the moves available to each player [9].

We have an instinct to play because during our evolution as a species playing generally
provided a safe way of learning new things that were potentially beneficial for our life.

What constitutes the fun when playing a game? There are three main components in
the theories on why gaming is fun: reward, flow and iteration [12]. Reward derives from
our intrinsic nature to reward ourselves for doing something. Video games play on this by
providing immediate in-game rewards for completing ingame tasks. Flow is the player’s
ability to become almost a part of the game. Being in the flow means that the player
becomes immersed in the game and loses the track of reality and the sense of self. For
this to occur in a game the player must be actively involved, concentrated and unaware of
realities of time and space boundaries.

Csikszentmihalyi introduced the original concept of flow (Fig. 3.1). He defined it as ”the
holistic experience that people feel when they act with total involvement.“ This definition
suggests that flow consists of four components: control, attention, curiosity, and intrinsic
interest. When in the flow state, people become absorbed in their activity: their awareness

15

is narrowed to the activity itself; they lose self-consciousness, and they feel in control of
their environment. Such a concept has been extensively applied in studies of a broad
range of contexts, such as sports, shopping, rock climbing, dancing, gaming and others.
Specifically to computer games, a flow is defined as an extremely enjoyable experience,
where an individual engages in an on-line game activity with total involvement, enjoyment,
control, concentration and intrinsic interest [4].

Figure 3.1: Mental state in terms of challenge level and skill level, according to Csikszent-
mihalyi’s flow model.

In other words, the aim is to keep the challenge level always relevant to players’ skills.
Even when a player enters a game with a low skills level, we should follow their learning
curve and adjust the difficulty accordingly. An inherent feature of any challenge (and of
the learning required to master it) is its difficulty. Here the difficulty is a subjective factor
that stems from the interaction between the player and the challenge: some people find
controlling a simulation of a helicopter in a threedimensional space as easy and natural
as walking, but most would struggle with it for quite a while before they master it. This
example also demonstrates that the perceived difficulty is not a static property: it changes
with the time that the player spent learning a skill. In general the more time and effort
we invest into learning something new, the better we get at it and the easier subjectively
the tasks that exercise this skill get. To complicate things further, not only the perceived
difficulty depends on the current state of the player’s skills and her learning process, the
dependency is actually bidirectional: the ability to learn the skill and the speed of the
learning process are also controlled by how difficult the player perceives the task. If the bar
is set too high and the task appears too difficult, the player will end up frustrated and will
give up on the process in favour of something more rewarding. Then again if the challenge
turns out to be too easy (meaning that the player already possesses the skill necessary
to deal with it) then there is no learning involved: even though the player accomplishes
the task and receives the in-game rewards, she is missing out on that internal reward, the

16

feeling of joy that the moment of mastery provides. And without it there is no sense of
accomplishment, which makes the game appear boring (Fig. 3.2).

Figure 3.2: Dependency of a flow channel to challenge and skills levels.

And finally, iteration is the games ability to be different upon repetition.
For these reasons the game that strives to be fun should provide the challenges for the

player of the “right” difficulty: the one that stimulates the learning without pushing the
players too far or not enough. Ideally, the difficulty of any particular instance of the game
should be determined by who is playing it at this moment; the game should possess an
ability to change the difficulty of its challenges on the fly, in an online fashion.

3.1 Progressive difficulty
The traditional way in which games treat difficulty adjustment is to provide players with
a way of controlling the difficulty level themselves. To this end, typical levels would be
‘beginner’, ‘medium’, and ‘hard’. Such a strategy has many problems. On the one hand, if
the number of levels is small, it may be easy to choose the right level but it is unlikely that
the difficulty is then set in a very satisfying way.

On the other hand, if the number of levels is large, it is more likely that a satisfying
setting is available but finding it becomes more difficult. The necessity of going back and
forth between the gameplay and the settings when the tasks become too difficult or too
easy disrupts the flow component of the game.

On yet another hand, for game developers, it is not an easy task to map a complex
game world into one road map with 3 variables. Constructing such “mapping” requires
extensive testing, resulting in time and money costs. Consider also the fact that generally
games require several different skills to play them. Providing the computer with an ability
to adjust the game to all these skill levels automatically is more user-friendly than offering
several settings for a user to set.

17

3.2 Machine learning algorithms for dynamic difficulty
ML techniques have been widely used in competitive domains, with the focus on finding
an optimal strategy which maximizes the payoffs for the agent on most scenarios of com-
petition. It means that the agent must perform as well as possible. Computer games can
be seen as competitive environments, however, in this case, it is necessary to achieve a
balanced behavior [2].

Game balancing is related to ensuring a good level of challenge in a game, which implies
avoiding the extremes of getting the player frustrated because the game is too hard or
becoming bored because the game is too easy [7].

Gilleade et al. [3] and Sweetser and Wyeth [11] state that providing players with a
personalised, adaptive experience can sustain their attention and keep their interest for
longer, which agrees with the argument that games with a personalised dynamic difficulty
adjustment (DDA) system are more interesting.

Motivated by this, the aim is to create a mechanism for developing online educational
assignments that on the fly provide challenges of the “right” difficulty, i. e., such that players
are stimulated but not overburdened. To this purpose, it is investigated how machine
learning techniques can be employed to automatically adjust the difficulty of games. A
general technique for this problem has natural applications in the huge markets of video
games but can also be used to improve the learning rates when applied to serious games or
gamification.

According to [2], dynamic balancing of difficulty is divided into three basic rules:

∙ First, to adapt to the player’s profile.

∙ Second, monitor the performance of the player.

∙ Third, keep the player interested.

All this without the players realize that the system is making changes to the game. In
fact, maintaining the adequate level is a dynamic process, because of the evolution of the
player’s behavior, as a natural consequence of the experience acquired in playing the game.
On the other hand, as user skills can regress (for instance, after a long period without
playing the game), regressions of the level are also needed.

There are many different approaches to address DDA. One can control the game envi-
ronment settings in order to make challenges easier or harder. Although this approach may
be effective, its application is constrained to game genres where such particular environment
manipulations are possible.

Another approach to dynamic game balancing is to modify the behavior of the Non-
Player Characters (NPCs), characters controlled by the computer and usually modeled as
intelligent agents. This approach has been innovatively implemented employing genetic
algorithms techniques to keep alive agents that best fit the user level. However, it shows
some limitations considering skilled users or users with uncommon behavior, as it takes a
long time until the agents reaches the user level.

18

Chapter 4

Conclusion

This essay covers the broad area of such innovative educational methods, as gamification
and serious games. Related problems and possible solutions with the help of Machine
learning algorithms are described.

Since this is mainly just a theoretical state of the art, the future work lies in the practical
are of the implementation of the gamified framework. Some part of it is already done, in
a form of a single gamified exercise for learning jQuery in a Web Development course at
VUT FIT. Next steps include more testing and evaluation, and also developing more tasks
to cover other topics. After this, machine learning should be used to create a variable
difficulty for learners.

19

Bibliography

[1] Acerbi, A.; Lampos, V.; Garnett, P.; et al.: The expression of emotions in 20th
century books. PloS one. vol. 8, no. 3. 2013: page e59030.

[2] Andrade, G.; Ramalho, G.; Santana, H.; et al.: Automatic computer game balancing:
a reinforcement learning approach. In Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems. ACM. 2005. pp.
1111–1112.

[3] Gilleade, K.; Dix, A.; Allanson, J.: Affective videogames and modes of affective
gaming: assist me, challenge me, emote me. DiGRA 2005: Changing Views–Worlds
in Play.. 2005.

[4] Hsu, C.-L.; Lu, H.-P.: Why do people play on-line games? An extended TAM with
social influences and flow experience. Information & management. vol. 41, no. 7.
2004: pp. 853–868.

[5] Hunicke, R.; Chapman, V.: AI for Dynamic Difficulty Adjustment in Games. 2004.
Association for the Advancement of Artificial Intelligence (AAAI): pp. 2–5.

[6] Julian, D.: Designing machine learning systems with Python. Packt Publishing Ltd.
2016.

[7] Koster, R.: Theory of Fun for Game Design: Paraglyph. 2004.

[8] Kotsiantis, S. B.; Zaharakis, I.; Pintelas, P.: Supervised machine learning: A review
of classification techniques. Emerging artificial intelligence applications in computer
engineering. vol. 160. 2007: pp. 3–24.

[9] Missura, O.; et al.: Dynamic difficulty adjustment. 2015.

[10] Rollings, A.; Adams, E.: Andrew Rollings and Ernest Adams on game design. New
Riders. 2003.

[11] Sweetser, P.; Wyeth, P.: GameFlow: a model for evaluating player enjoyment in
games. Computers in Entertainment (CIE). vol. 3, no. 3. 2005: pp. 3–3.

[12] Tekinbaş, K. S.: The game design reader: A rules of play anthology. MIT press. 2006.

20

	Introduction
	Machine learning
	Real-life examples of machine learning application
	Classification
	Regression
	Clustering
	Dimensionality reduction
	Errors
	Unified modeling language
	Class diagrams
	Object diagrams
	Activity diagrams
	State diagrams

	Python for Machine Learning

	Dynamic difficulty adjustment
	Progressive difficulty
	Machine learning algorithms for dynamic difficulty

	Conclusion
	Bibliography

