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Abstract

Dynamic languages, which have become very popular for scientific computing, are gener-
ally considered highly productive, but lacking in performance. This survey presents Julia,
a new dynamic language designed specifically for technical computing, which is devel-
oped with an emphasis on performance and compact and easy-to-understand source code,
which allows most of the Julia’s libraries to be written in Julia itself, while also being
able to incorporate C and Fortran libraries.

The content of this survey is intended for programmers, who come from the area
of performance computing, as well as others who are searching for a new fast dynamic
language and want to find out the possibilities that this language offers in a compressed
format. It is based on the official documentation, related papers and personal experience
and focuses on the performance aspects of Julia, parallel programming, profiling and
code optimizations.
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1

Introduction

High level environments such as Matlab, Octave and R, provide greatly increased
convinience and productivity. However, C and Fortran remain the gold standard for
computationally-intensive tasks. As a result, the most challenging areas of technical com-
puting have benefited the least from the increased abstraction and productivity offered
by higher level languages.

The two-tiered architectures have emerged as a compromise between inconvinience
and performance. Programmers use dynamic languages to express high-level logic, while
the heavy lifting is done in static laguages like C and Fortran. While this approach
can be optimal for some applications, there are a few drawbacks. For some algorithms,
especially the parallel ones, the code complexity can increase dramatically. To achieve
high performance, one of many techniques used is vectorization, which is unnatural for
many problems and migh generate large temporary objects which could be avoided with
explicit loops. It would be preferable to write compute-intensive code in one productive
language.

An alternative to the two-tier compromise is to enhance the performance of existing
dynamic laguages. Projects like Python compiler framework PyPy[3] have been fairly
succesful. However the design decisions made under the assumption that the language is
interpreted tend to negatively impact the ability to generate efficient code.

Julia1 is designed from the ground to take advantage of modern techniques for exe-
cuting dynamic languages efficiently. As a result, Julia has the performance of a statically
compiled language while providing interactive dynamic behaviour and productivity like
Python, LISP or Ruby. This is achieved thanks to the Julia’s core being based on the
LLVM implementation.

1 http://www.julialang.org/
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Language Performance Comparison

In [1], the performance of Julia on a set of tasks was compared against other dynamic
and static languages, including C, Matlab, Python and others (see Figure 2.1).

Fig. 2.1: Performance comparison of various language performing simple micro-
benchmarks. Benchmark execution time relative to C. (Smaller is better, C performance
= 1.0) [1].

The results show that Julia’s performance is ahead of not only all other dynamic
languages, but is even comparable to static languages. The results were obtained on a
single core (serial execution) Intel(R) Xeon(R) CPU E7-8850 2.00GHz CPU with 1TB
of 1067MHz DDR3 RAM, running Linux.
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Similarly, the performance of different dynamic languages was compared in [2], this
time on Apple MacBook (see Fig. 2.1). Again, Julia comes out on top.

Fig. 2.2: Microbenchmark results (times relative to C++, log-scale). The C++ baseline
was compiled by GCC 4.2.1, taking best timing from all optimization levels. Native imple-
mentations of array operations, matrix multiplication, sorting, are used where available.
(Smaller is better, C++ performance = 1.0) [2].
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Basic Syntax and Semantics Overview

This chapter will briefly describe Julia’s syntax as a quick introduction to its basic
programming rules and concepts. Note that Julia is a case-sensitive language. See online
documentation for further details1.

3.1 Variables

Variable names must begin with a letter (A–Z or a–z), underscore, or a subset of Uni-
code characters greater than ooAo. The variable syntax does not differ much from other
dynamic languages:

x = 10

x = x + 1.0

x = "Hello World!"

Julia provides some predefined constants and functions, which can be overwritten:

pi julia> π = 3.1415926535897 . . .
pi = 3 julia> WARNING: imported binding for pi overwritten in Main

sqrt(100) julia> 10

sqrt = 4 julia> WARNING: imported binding for sqrt overwritten in Main

However built in statements cannot be used as variables:

else = false julia> ERROR: syntax: unexpected "else"

try = "No" julia> ERROR: syntax: unexpected "="

3.2 Integers and Floating-point numbers

Basic types are shown in Table 3.1.
64-bit floating-point literals have common syntax:

1 http://docs.julialang.org/en/release-0.4/manual/variables/
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Bool Integer Float
signed unsigned

Bool Int8 UInt8

Int16 UInt16 Float16

Int32 UInt32 Float32

Int64 UInt64 Float64

Int128 UInt128

Table 3.1: Basic variable types.

Float64 : 1.0 1. .5 -1.23 1e10 2.5e-4

The 32-bit version has f instead of e:

Float32 : .5f0 2.5f-4

Half-precision floating-point numbers are also supported (Float16), but only as a storage
format. In calculations they’ll be converted to Float32.

The underscore can be used as digit separator:

0_000, 0.000_000_005, 0xdead_beef, 0b1011_0010

Special floating point values include

Inf16 Inf32 Inf -Inf16 -Inf32 -Inf NaN16 NaN32 NaN

Julia also supports Arbitrary Precision Arithmetics with BigInt and BigFloat types:

x = factorial(BigInt(40)) julia> 815915283247897734345611269596115894272000000

Binary, octal and hexadecimal literals are also supported:

0b10 0o7 0x16

Numeric literal coefficients are also supported, precedence is the same as unary operators:

2x^2 2^2x

Overflow behaviour is the same as in the C language.

x = typemax(Int64) julia> 9223372036854775807

x = x + 1 julia> -9223372036854775808

3.3 Operators

All operators are shown in Table 3.2.
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unary + -

binary + - * / \ (inverse division) ^ (power) % (modulo)

negation !

bitwise ∼ (not) & (and) | (or) $ (xor) >>> (logical shift right) >> << (arithmetic shift)

updating += -= *= /= \= ÷= %= ^= &= |= $= >>>= >>= <<=

comparison == != < <= > >=

Table 3.2: Arithmetic operators

3.4 Complex and Rational Numbers

The imaginary part of complex numbers is written as im, which represents a global
constant and is bound to the complex number i, representing the principal square root
of -1.

1 + 2im(−3 + 2im)/(1− 2im)2

Julia has a rational number type to represent exact ratios of integers. Rationals are
constructed using the // operator:

6//9

3.5 Characters and Strings

Characters are represented as a 32-bit bitstype and are interpreted as Unicode code point.

’A’ ’a’ ’\u2200’ ’\x7f’ ’\177’ ’\t’ ’\n’ ’\0’

Strings are finite sequences of these characters and are delimited by double quotes. Julia
also supports character and substring extraction in a number of different ways:

str = "Hello, world.\n"

str[1] julia> ’H’

str[end-1] julia> ’.’

str[4:9] julia> ’lo, wo’

str[0] julia> ERROR: BoundsError()

An arbitrary number of strings can be concatenated together:

greet = "Hello"

whom = "world"

string(greet, ", ", whom, ".\n") julia> "Hello, world.\n"

A special type of strings are tripple quoted strings, which are used for creating well-
arranged long strings:

str = """

Hello,

world.

""" julia> "Hello, world.\n"
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Common string operations are also supported, comparison proceeds lexicographically:

"abracadabra" < "xylophone" julia> true

"abracadabra" == "xylophone" julia> false

"abracadabra" != "xylophone" julia> true

search("xylophone",’x’) julia> 1

contains("xylophone",’o’) julia> true

Julia has Perl-compatible regular expressions (regexes), as provided by the PCRE library,
and are represented as strings prefixed with r.

r"^\s*(?:#|$)" julia> r"^\s*(?:#|$)"
ismatch(r"^s*(?:#|$)", "not a comment") julia> false

match(r"^\s*(?:#|$)", "# a comment") julia> RegexMatch("#")

3.6 Functions

In Julia, a function is an object that maps a tuple of argument values to a return value.
The basic definition syntax is:

function f(x,y)

x + y

end

Function bodies with a single (or compound) expression can be defined in a more compact
form as:

f(x,y) = x + y

A function is called using the traditional parenthesis syntax:

f(2,3) julia> 5

Arguments of the function are not copied during the call, they act as a new variable
”binding”. This behaviour is similar to other dynamic languages and references in C++.

The value returned by a function is the value of the last expression evaluated (by
default the last expression of the body). The return keyword causes a function to return
immediately.

function g(x,y)

return x * y

x + y

end

g(2,3) julia> 6

Operators are functions and can be expressed using infix form:

1+2+3 julia> 6

+(1,2,3) julia> 6

Functions can be defined without a name (anonymous functions):
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x -> x^2 + 2x - 1 julia> (anonymous function)

The primary use for anonymous functions is passing them to functions which take other
functions as arguments. A classic example is map(), which applies a function to each
value of an array and returns a new array containing the resulting values:

map(x -> x^2 + 2x - 1, [1,3,-1]) julia> 3-element Array{Int64,1}: 2 14 -2

Functions can return multiple values using a tuple, which can be defined without paren-
theses.

function f(a,b)

a+b, a*b

end;

x, y = f(2,3); # x == 5, y == 6

It is possible to write functions that take arbitrary number of arguments (varargs func-
tions). An ellipsis is following the position of the last argument. In this case, the x

argument is bound to an iterable collection of zero or more values passed to the function:

bar(a,b,x...) = (a,b,x)

bar(1,2) julia> (1,2,())

bar(1,2,3) julia> (1,2,(3))

bar(1,2,3,4,5,6) julia> (1,2,(3,4,5,6))

Functions can have optional arguments:

function multiply(x, y, z=10)

x * y * z

end

multiply(2,3) julia> 60

multiply(2,3,4) julia> 24

3.7 Control Flow

Conditional if-elseif-else evaluation, where elseif and else are optional, is written
as follows:

if x < y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

Julia also provides the so-called ”ternany operator”:

println(x < y ? "less than" : "not less than")

Conditional statements using && and || are also supported:
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n >= 0 || error("n must be non-negative")

n == 0 && error("n cannot be zero")

Julia implements the two main types of loops, while and for:

while i <= 5 for i = 1:5

println(i) println(i)

i += 1 end

end
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Code Profiling

The Profile module, when running, takes measurements of the running code and pro-
duces output to better understand how much time is spent in different parts of the code.
The main usage is to identify application’s ”bottlenecks”.

Profiling in Julia is known as ”sampling” or statistical profiler. It periodically takes
a backtrace during the runtime of the code and snapshots the current state of execution
by capturing currently-running function and a line number. The more time is spent
executing an individual line of code, the more frequent its record is in the backtraces.
The backtraces occur at intervals of around a few milliseconds, so the collected data is
subject to statistical noise.

Despite these limitation, sampling profilers have substantial strengths. No modifica-
tions to the code are necessary, it can profile Julia’s core and optionally C and Fortran
libraries, and depending on the tracking intervals, the performance overhead is very little.

To run the profiler, we have to specify a function to be profiled:

@profile myfunc()

If we want to profile the whole application, the main function has to specified. The
profiling result, after running the Profile.print() command, looks similar to this:

Count File Function Line

3121 client.jl _start 373

3121 client.jl eval_user_input 91

3121 client.jl run_repl 166

842 dSFMT.jl dsfmt_gv_fill_array_close_open! 128

848 none myfunc 52

1510 none myfunc 35

Each line represents a particular spot in the code. The first column represents the
amount of backtraces hitting this particular line of code (column 4) of the function
printed in column 3. Statistically, the expect uncertainty for N samples collected on a
line is on the order of

√
N . The one major exception is the garbage collector, which is

written in C, but runs infrequently and is often very expensive.
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Performance Hints and Enhancements

The following sections will briefly go through a few tips, patterns and techniques to
further enhance Julia’s performance.
Array bound checking Use @inbounds to eliminate array bounds checking within
expressions:

@inbounds s += x[i]*y[i]

Performance annotations Use @fastmath to allow floating point optimizations
(however note that it may slightly change the numerical results). Write @simd in front of
an innermost for loop to enable vectorization (however this feature is still experimental
and forcing vectorization incorrectly, for example with iteration-dependent loops, may
lead to incorrect results).

@fastmath @simd for i=1:length(x)

@inbounds s += sin(2pi*x[i]*y[i])

Subnormal numbers Treat subnormal numbers as zeros. Subnormal number have all
exponent bits equal to zero and mantisa is non-zero. A call set zero subnormals(true)

grants this permission for all floating point operations.
Deprecated functions Do not use deprecated functions, because they internally per-
form a lookup in order to print relevant warnings, which can cause significant slowdowns.
Parallel functions Use @async for parallel function execution instead of @spawnat.
This code, which performs a single network round-trip to every worker:

responses = cell(nworkers())

@sync begin

for (idx, pid) in enumerate(workers())

@async responses[idx] = remotecall_fetch(pid, foo, args...)

end

end

is faster than this code, which results in two network calls:
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refs = cell(nworkers())

for (idx, pid) in enumerate(workers())

refs[idx] = @spawnat pid foo(args...)

end

responses = [fetch(r) for r in refs]

String interpolation When doing I/O, forming intermediate strings is a source of
overhead. Instead of

println(file, "$a $b")

do a direct output string by string using

println(file, a, " ", b)

Preallocate data When working with arrays or some other complex type, preallocate
the space for data before it is actually needed. Allocations and garbage collections are
substantial bottlenecks. Instead of

function xinc(x)

return [x, x+1, x+2]

end

use

function xinc!{T}(ret::AbstractVector{T}, x::T)

ret[1] = x

ret[2] = x+1

ret[3] = x+2

nothing

end

Memory access ordering Julia stores arrays in column-major order. Not respecting
this leads to cache misses and poor performance.
Avoid global variables Their value and type can be changed at any time, and this
makes it harder for the compiler to optimize the code.
Use @time and @allocated The @time macro can measure time spent executing
a function and also reports memory allocated by the function. Unexpected allocations
often indicate a problem with type-stability. Similarly, the @allocated macro also reports
allocated memory by an expression.
Profiler Use Julia’s profiler to identify bottlenecks in your code.
Type declarations Julia is not the type of language where optional type declarations
are the principal way to make code run faster. However there are a few exceptions. With
user defined type like

type Foo

field

end

the compiler will generally not know the type of Foo.field, since the value it refers to
might be modified at any time. It helps to declare it as field::Float64. Similarly, it
may help the compiler if the type in an expression is specified explicitly:
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x = a[1]::Int32

Type stability Performance can significantly degrade when frequently used variables
change their type. For example if the variable is supposed to be a float, declare it as x =

1.0 or x::Float64 = 1, not x = 1.
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External Programming Language Integration

In this chapter, Julia’s ability to integrate, interpret and run external commands and
libraries is presented.

6.1 External commands

Julia uses the same backtick command notation as shell, Perl and Ruby. However, writing
one of the commands below

‘echo hello‘

‘perl -le ’$|=1; for (0..3) { print }’‘

pipeline(‘cut -d: -f3 /etc/passwd‘, ‘sort -n‘, ‘tail -n5‘)

differs in several aspects. The command is only created as an object, not run. When run
explicitly (using run(command)), the output is not implicitly captured by Julia, but is
printed to stdout. The command is never run in shell, Julia parses the command directly
and runs it as its child process.

6.2 Calling C code

C functions can be called directly from Julia (even from the interactive prompt) without
any generation or compilation, just by doing a call using ccall. The code has to be
available as a shared library (compiled with -shared -fPIC in GCC).

Libraries and functions are referenced using a tuple of the form

(:function, "library")

To actually generate a function call, ccal() is used:

t = ccall( (:clock, "libc"), Int32, ())

path = ccall((:getenv, "libc"), Ptr{UInt8}, (Ptr{UInt8},), "SHELL")

It is also possible to call any Julia’s function in C code using C function pointers and
cfunction, which accepts three arguments, the name of the Julia function, return type
and a tuple of arguments:
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function mycompare{T}(a::T, b::T)

return convert(Cint, a < b ? -1 : a > b ? +1 : 0)::Cint

end

const mycompare_c = cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble}))

Mapping argument types between Julia and C has to be specified explicitly and is critical
for correct functionality of the code.

Memory allocation and deallocation has to be handled by calls to the appropriate
cleanup routines of the library used.

Global variables exported by native libraries can be accessed using the cglobal func-
tion:

cglobal((:errno,:libc), Int32)

Julia is not thread safe to multi-threaded C applications. As a precaution, a two-
layered system has to be set up by passing a function to SingleAsyncWork.

cb = Base.SingleAsyncWork(data -> my_real_callback(args))

Limited support for C++ is provided by the Cpp, Clang, and Cxx packages.
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Parallel Programming

Most modern computers possess more than one CPU, and several computers can be com-
bined together in a cluster. In order to reach competitive level of overall performance, the
support and implementation of task-level parallelism is necessary. The C/C++ language
offers standards such as OpenMP and MPI, which allow high levels of parallelism and
are the gold standard for high performance computing on clusters and supercomputers.

Julia provides a multiprocessing environment based on message passing to allow pro-
grams to run on multiple processes in separate memory domains at once. Julia’s imple-
mentation of message passing is different from other environments such as MPI. The
way Julia communicates is generally ”one-sided”, meaning that programmers have to
explicitly manage only one side of a two-side communication, and these operations do
not look like ”send” or ”receive”, but rather like a higher-level function calls.

Julia’s parallel programming is built on two main primitives: remote references and
remote calls. A remote reference is an object, that can refer to any other object stored
on a particular process, and can be used from any process. A remote call is a request by
one process to call a certain function with certain arguments on another (and possibly
the same) process, and a remote reference to the result is returned. Remote calls are
non-blocking, meaning that the caller immediately proceeds to its next operation and
the remote call happens somewhere else. It is possible to wait for the remote call to
finish by calling wait() on its remote reference, and the full result can be obtained by
calling fetch(). The idea is that parallel programming in Julia is asynchronous, meaning
that instead of statements happening one after each other in a given order, they can be
executed and/or finished in a different order and the programmer is not sure when.

The syntax is:

r = remotecall(processIndex, function, functionArg1, functionArg2...)

where r is a remote reference storing the result.
Each process has an associated identifier. The process providing the interactive Julia

prompt always has an ID equal to 1. The processes used by default for parallel operations
are referred to as ”workers”. When there is only one process, process 1 is considered a
worker. Otherwise, workers are considered to be all processes other than process 1.

The base installation of Julia supports two type of clusters:

• A local multicore machine with shared memory (similarly to OpenMP in C/C++)
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• A cluster spanning machines with distributed memory (similarly to MPI in C/C++)

For adding, removing and assigning, functions addprocs(), rmprocs() and workers()

are available.

7.1 Data Movement

Communication overhead very often is the most time consuming part of the whole parallel
execution. Reducing the number of messages, the amount of data or optimizing the
communication pattern is then critical to achieve good performance and scalability.

Basic data movement operations are fetch(), which moves an object to the local
machine, and @spawn, which sends data or tasks to another process. In the example
below, a random matrix is constructed and squared on another process and then moved
to the local machine:

Bref = @spawn rand(1000,1000)^2

fetch(Bref)

On the other hand, a parallel flip-coin-counting Monte Carlo simulation, where data
movement is not required, may look like this:

function count_heads(n)

c::Int = 0

for i=1:n

c += rand(Bool)

end

c

end

a = @spawn count_heads(100000000)

b = @spawn count_heads(100000000)

fetch(a)+fetch(b)

In this programming pattern, many iterations are run independently on two processes
and the result is combined together locally (e.q. operation reduction). If we want to
employ all the available processes, the parallel loop can be used:

nheads = @parallel (+) for i=1:200000000

Int(rand(Bool))

end

7.2 Synchronization

The keyword @sync specifies a point in the code where each process must wait until all
processes arrive to this point (similarly to #pragma omp barrier in OpenMP). In the
example below, all processes synchronize before running another iteration of the loop.
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@sync begin

@parallel for i,j = 1:size(q,2)

q[i,j] = q[i,j/2] + u[i,j]

end

end

7.3 Channels

Channels are a fast way of inter-task communication. A Channel(T::Type, n::Int) is
a shared queue of maximum length n holding objects of type T. Multiple readers can read
off the channel via fetch and take!. Multiple writers can add to the channel via put!.

7.4 Shared Arrays

Shared Arrays use the shared memory to map the same array across many processes.
Each process has access to every element of the array (unlike with DistributedArrays),
where each process has its chunk of data. The constructor is of the form:

SharedArray(T::Type, dims::NTuple; init=false, pids=Int[])

This constructor creates a shared array of a bitstype T and size dims. Most algorithms
work the same way on Shared Arrays as they do on normal arrays.

7.5 Cluster Managers

The networking management of Julia processes in a cluster environment is done via
cluster managers. These managers take care of:

• launching workers
• managing workers’ events
• optionally data transport

Only the master process with pid can launch and remove workers. All processes can
communicate with each other using built-in TCP/IP transport. After launching, each
worker starts to listening on a free port. The cluster manager collect worker’s information
and makes it available to the master process. Master process then sets up TCP/IP
connections and every worker is notified of other workers. A mesh network is established
in a way that each worker connects to a worker with lower id.

Julia has two cluster managers, the LocalManager launches workers on the same
host, and the SSHManager connects these hostnames together. The launching method
has parameters:

function launch(manager::LocalManager, params::Dict, launched::Array,

c::Condition)

...

end
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LocalManager specifies the type of manager, Dict are all the keyword arguments
passed to the process, Array appends one or more configuration objects and Condition

variable to be notified as and when workers are launched.

7.6 Network topology

There are there main types of network topology (following arguments are passed as a
keyword argument topology to addprocs()):

• :all to all - all workers are connected to each other
• :master slave - only the master process has connection to the workers
• :custom - the launch method of the cluster manager specifies the topology, e.q. which

workers are directly connected to others
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Conclusion

This survey presented Julia as one of the modern dynamic languages focusing primarily on
performance and compact source code implementation. The main emphasis was to present
the performance of Julia compared to other languages on a set of microbenchmarks,
basic syntax overview, parallel environment, which is essential for scaling to high levels
of performance, performance tips, embedding libraries written in C language and code
profiling.
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