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Chapter 1

Introduction

Decompilation is a reverse engineering technique performing a transformation of a platform-
dependent binary file into a High Level Language (HLL) representation. Most existing de-
compilers are translating low-level machine code into the C language, since it is simple, yet
powerful enough. Decompilers are not yet advanced enough to serve as a standalone tool,
but combined with the traditional disassemblers, they allow much faster manual program
analysis. Until recently, combination of a high-level C and low-level assembly represen-
tations was enough to reverse most applications. However, due to the increasing usage of
C++ programming language in creation of more complex malware, understanding reversed
programs have become much more difficult. For example, some of the world’s most dan-
gerous and widespread malicious programs like Agobot, variants of Mytob, Zeus trojan
horse [6], Conficker.D worm [1], or Cryptolocker [2] were written in C++. To ease the
analysis, new techniques reconstructing C++ features have been developed. This paper at-
tempts to provide a review of most of the existing techniques and discover new areas that
might be explored in the future.

This paper is organised as follows. Chapter 2 introduces the basic attributes and con-
structions of the C++ programming language. The underlying mechanisms supporting
these constructions are explored in Chapter 3. The chapter is also describing how are
existing decompilation techniques exploiting these mechanism in order of C++ decompila-
tion. Chapter 4 is discussing possible research areas that were not yet explored and might
become a subject of the author’s further analysis. Chapter 5 concludes the paper by sum-
marising the most important points and outlining the future work.
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Chapter 2

C++ Language Overview

C++ is a general purpose programming language developed by Bjarne Stroustrup while
working at Bell Labs. Even though it is mainly known as object-oriented language, it sup-
ports other paradigms as well (e.g. procedural, functional). It was designed to be efficient
and flexible in order to use it for system programming. However, it spread to many other ar-
eas and became one of the most used programming languages today [4]. C++ is a compiled
language available on nearly all platforms. The latest official standard [13] was ratified
by the International Organization for Standardization (ISO) in fall of 2011 (it is therefore
known as C++11).

This chapter introduces the basic constructions of the C++ programming language from
the user’s point of view. It is based on [13] and [29].

2.1 Basics
Since C++ is heavily based on the C programming language (however, it is not a strict
superset of C) it inherits most of C’s syntax and constructs. This includes data types,
operators, control structures, functions and many other C language attributes. These basic
constructions are further enhanced by principles described in the following sections of this
chapter. The most elemental syntax of C++ is illustrated on the hello world program in
Figure 2.1.

/* Hello world program */
# include <iostream >

int main()
{

std::cout << "Hello , world!\n";
}

Figure 2.1: Hello world program in the C++ programming language.
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2.2 Objects
C is an imperative programming language, where are data abstractions and operations per-
formed on them declared separately, i.e. there is no language-supported relationship be-
tween data and functions. As was mentioned at the beginning of this chapter, C++ en-
hances C with an object-oriented programming (OOP) features. It introduces the concept
of classes—data structures containing data and functions operating on them. Classes pro-
vide four features essential for OOP: abstraction, encapsulation, inheritance, and polymor-
phism.

Figure 2.2 shows a declaration of data type representing one point in the three-dimensional
space. Furthermore, there are two functions working with this type. The first one creates
Point3D object and the second one prints out its content. The same example is implemented
as an abstract data type using C++ in Figure 2.3. This time, data (class members) are
encapsulated in the class that provides methods (class member functions) for their access
and manipulation. Different aspects of this example are further explored in the following
sections.

typedef struct point3D
{
double x;
double y;
double z;

} Point3D;

Point3D create_point3D(
double x, double y, double z)

{
Point3D ret;
ret.x = x;
ret.y = y;
ret.z = z;
return ret;

}

void print_point3D(Point3D *p)
{

printf("%f %f %f",
p->x, p->y, p->z);

}

Figure 2.2: Example of an abstract data type
declaration and its manipulation functions in

the C language.

class Point3D
{
public:

Point3D(double x,double y,double z
): _x(x), _y(y), _z(z) {}

∼Point3D() {}
double x() {return _x}
double y() {return _y}
double z() {return _z}
void x(double x) {_x = x;}
void y(double y) {_y = z;}
void z(double z) {_z = y;}
void print_point3D()
{

printf("%f %f %f", _x, _y, _z);
}

private:
double _x, _y, _z;
static int ID; ///< used by one of

the later examples
};

Figure 2.3: Example of an abstract data type
declaration and its manipulation methods in

the C++ language.

2.2.1 Encapsulation
Information hiding (i.e. encapsulation) is a principle used to make sure data structures are
used as was intended. It segregates implementation decisions from other parts of a program,
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which can access the data only through a provided stable interface. In C++, it is possible to
declare class members and methods as public (accessible anywhere), protected (acces-
sible to methods of the original class, classes that inherit from it and specified friends) and
private (accessible to member methods or friends).

All data members in the example in Figure 2.3 are private and therefore inaccessible
outside the class. However, class provides sufficient interface for the basic manipulation.
Point3D(double x,double y,double z) method is a so-called constructor—a subroutine
called to create an instance of the class. On the contrary, ∼Point3D() is a destructor—an
inverse function to constructor called when objects are destroyed. Method double x() is a
so-called getter, which provides a read access to private the data member. Method void x(

double x) is a setter writing a value of the data member.

2.2.2 Inheritance
Inheritance is a code reuse mechanism allowing to derive a class from one (single inheri-
tance) or more (multiple inheritance) base classes, inheriting their properties and behaviour.
Derived class may extend or override the original implementation while maintaining the
same interface. Relationships between classes form a hierarchy. The access specifiers
(public, protected, private) may be used to determine which base class members can
be accessed by unrelated and derived classes. The inheritance may be also declared virtual,
in which case only one instance of a base class exists in the hierarchy. This helps to solve
potential problems caused by multiple inheritance.

Figure 2.4 demonstrates inheritance on three classes. Class Point3D is derived from
Point2D, which is derived from Point. Each derivation extends the base class by adding the
support for a new dimension, ultimately forming a class with the same behaviour as the
one in Figure 2.3. However, this time an implementation is much more flexible, since each
class can be used independently on the others.

2.2.3 Polymorphism
Polymorphism enables (1) single interface for entities of different types, and (2) different
object behaviour under different circumstances. C++ supports both compile-time and run-
time polymorphism.

Compile-time polymorphism

As the name suggests, this type of polymorphism is resolved by the compiler during the
source code compilation. Therefore, there is no run-time performance overhead, but there
is also no possibility of run-time decisions. The first technique of compile-time (static)
polymorphism is function overloading. It allows to declare two or more same-named func-
tions, providing they have different arguments. Compiler can then use these parameters
to distinguish which function is actually being called. The second way to achieve static
polymorphism is using generic programming techniques described in Section 2.3.
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class Point
{
public:

// declaration of: Point(), ∼Point(), double x(), void x(double x)
protected:

double _x;
}
class Point2D : public Point
{
public:

// declaration of: Point2D(), ∼Point2D(), double y(), void y(double y)
protected:

double _y;
}
class Point3D : public Point2D
{
public:

// declaration of: Point3D(), ∼Point3D(), double z(), void z(double z)
protected:
double _x;

}

Figure 2.4: Example of inheritance in the C++ language.

Run-time polymorphism

In C++, run-time (dynamic) polymorphism is achieved through class inheritance. The key
feature is that pointers and references to a base class can refer to objects of derived classes.
Since variable assignment occurs at run-time, it is not possible to resolve type of pointed-to
object during the compilation. Polymorphism is supported in the following ways (examples
are taken from Figure 2.5):

1. Through a set of implicit conversions such as: Polygon * ppoly1 = new Rectangle;.
This allows to store pointer to derived object into a pointer variable of the base class
type.

2. Through virtual function mechanism (e.g. ppoly1->area()). Function to call is deter-
mined by the type of the object. Therefore, only the Polygon members can be accessed
using the base type pointers ppoly1, ppoly2. However, virtual member functions such
as Polygon::area() can be redefined in derived classes while preserving its calling
properties through references. This means that once classes Rectangle and Triangle

define their own area() methods, it is no longer possible for a compiler to determine
which method implementation is actually going to be called. The decision is there-
fore delayed until run-time, when process called dynamic dispatch determines which
polymorphic method to call.

3. Through the dynamic_cast and typeid operators (e.g. Rectangle *r = dynamic_cast

<Rectangle*>(ppoly1)). The first one allows to safely convert object of general type
into more specific type. The later one allows to query type’s information.
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class Polygon
{
public:

void set_values(int w, int h) { width = w; height = h; }
virtual ∼Polygon() {}
virtual int area() { return 0; }

protected:
int width , height;

}
class Rectangle : public Polygon
{
public:

int area() { return width * height; }
};

class Triangle : public Polygon
{
public:

int area() { _area = width * height / 2; return _area; }
private:

int _area;
};
int main()
{

Polygon * ppoly1 = new Rectangle;
Polygon * ppoly2 = new Triangle;
ppoly1 ->set_values (4,5); // Polygon::set_values()
ppoly2 ->set_values (4,5); // Polygon::set_values()
cout << ppoly1 ->area() << ’\n’; // Rectangle::area()
cout << ppoly2 ->area() << ’\n’; // Triangle::area()
if (Rectangle *r = dynamic_cast<Rectangle*>(ppoly1))

cout << r->area() << ’\n’; // Rectangle::area()
}

Figure 2.5: Example of polymorphism in the C++ language.

2.3 Templates
C++ templates are the foundation of generic programming and template metaprogramming.
They allow to write the code that is independent of any particular data type. A template
is a generic blueprint used to create concrete function or class implementations for all of
the necessary data types. This process called instantiation is performed by a compiler at
compile-time.

Figure 2.6 shows an example of simple function template in C++. Template function
max() is parameterised by one type T. In the example, function is used on three places with
three different data types (int, double, std::string). Since all of these types support op-
erations performed by the function, it is possible for a compiler to instantiate three different
variants of the generic function.
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template <typename T>
T const& max(const T &a, const T &b)
{
return (a < b) ? (b) : (a);

}
void use_template(void)
{

cout << max(42, 743) << endl; // T = int
cout << max(3.1415, 2.72) << endl; // T = double
cout << max("hello", "world") << endl; // T = std::string

}

Figure 2.6: Example of function template in the C++ language.

2.4 Exception handling
Exception handling (EH) is a way to transfer control to handler function in case of detection
of some run-time problem or error. When an error occurs, an exception is thrown and the
current and all parent scopes are exited until the exception is caught by the nearest suitable
handler. Information about the problem is carried along as an object.

Exception handling example is shown in Figure 2.7. The try block contains code that
might raise an exception. The catch block serves as the exception handler routine. There
might be multiple handlers for a single try.

try {
std::vector <int> vec{1,2,3,4,5};
int i{vec.at(10)}; // throws std::out_of_range exeption

}
catch (std::out_of_range& e) { // handler catching std::out_of_range

std::cerr << "Index out of range: " << e.what() << ’\n’;
}
catch (...) { // catching any other exception

std::cerr << "Some other exception\n";
}

Figure 2.7: Example of exception handling in the C++ language.

2.5 Standard library
In addition to the C++ core language, the standard also specifies the C++ Standard Library.
It includes many crucial features making the life of C++ programmers much easier. Some
of the most important components are: containers (e.g. vectors, lists, maps), algorithms
(e.g. find, for_each), input/output streams, regular expressions, smart pointers, atomic op-
eration support and many other.
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Chapter 3

C++ Language Decompilation
Techniques

This chapter explains, and exploits for decompilation purposes, the underlying mechanisms
behind C++ features as they are implemented in the three major compilers (i.e. GCC, Clang
and MSVC). All examples are illustrated on 32-bit binaries (i.e. pointers in demonstrations
have 4 bytes). The chapter is based on several articles [12, 11, 27, 28, 26] as well as on the
C++ language standard [13] and an excellent Stanley Lippman’s book [22].

3.1 Class memory layout
The most basic thing to understand when trying to decompile C++ binaries is class instance
(i.e. object) memory layout. All major compilers are using the following object model:

• Ordinary data members are stored within each object. For example, members x, y,

z of class Point3D declared in Figure 2.3 are stored sequentially (in the declaration
order) as is shown in Figure 3.1.

• One instance of each static data member is allocated in the global data section outside
individual objects. For example, Point3D’s member ID is shared between all class
instances and compiler most likely places it into the .data section.

• Non-virtual methods (static and non-static) are also outside individual objects. These
functions are once again shared by all instances and are placed in the code (.text)
section. Compiler augments each of them by one parameter holding the reference to
a particular object they operate on.

• In case a class inherits from one or more base classes, the derived class layout is ap-
pended to concatenated layouts of all base classes. For example, Figure 3.2 depicts a
memory layout of the Point3D class, which was created by concatenating all inherited
and newly declared Point3D’s members.

• Virtual functions are supported through virtual function table (i.e. vtable), explained
in detail in Section 3.3. Pointer to this table is placed into each instance (typically
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double _x0

double _y4

double _z8

double Point3D::x()

...

void Point3D::print_point3D()

.text

static int Point3D::ID

.data

Figure 3.1: Memory layout of class Point3D

and its methods from Figure 2.3.

double Point::_x0

double Point2D::_y4

double Point3D::_z8

Figure 3.2: Memory layout of class Point3D

from Figure 2.4.

Polygon::vptr*0

int Polygon::width4

int Polygon::height8

int Triangle::_area12

Polygon vtable

.rodata

Figure 3.3: Memory layout of class Triangle

from Figure 2.5.

at the beginning) whose class contains at least one virtual method. If a class inherits
from one or more virtual bases, each embedded base object has its own virtual table
pointer. In such a case, the current object’s virtual functions are appended to the
first base’s virtual method list. For example, Triangle’s layout in Figure 3.3 contains
reference to Polygon’s virtual table (inheritance), but it does not have its own vtable.

Memory layout of any class is in fact just a C style structure of its ordinary and in-
herited data members, plus the optional1 virtual table pointer. Therefore, it is possible to
reconstruct them using the simple [23] and composite [24] data type recovery algorithms
designed for language C decompilation. There is however a problem in class pointer type
propagation discussed in Section 3.6.

3.2 Run-Time Type Information
The easiest and the most rewarding approach to polymorphic class hierarchy reconstruction
is Run-Time Type Information (RTTI) utilisation. RTTI is a mechanism for a run-time
object type querying, which stands behind dynamic_cast and typeid operators. An RTTI
structure with information about parents of each polymorphic class (i.e. class containing at
least one virtual method) is created by the compiler. All that needs to be done to obtain this

1In the sense that class may not contain virtual methods. If it does, virtual table reference is mandatory.
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knowledge is to find and parse all RTTI records. Full RTTI examination reveals a complete
polymorphic class hierarchy, even with the original class names.

Fortunately, all three major compilers’ ABIs stores a reference to class’s RTTI as the
first entry of corresponding virtual function table. Therefore, finding an RTTI is reduced
to a problem of identifying virtual tables solved in Section 3.3. An actual layout of RTTI
structures is also specified by the ABI, and it can be divided into two flavours: (1) GCC
and Clang, (2) MSVC. The remainder of this section describes both variants. See [25] for
more implementation details.

3.2.1 GCC and Clang
Run-Time Type Information used by these compilers is shown in the form of an UML
diagram in Figure 3.4. It is specified by Itanium C++ ABI [3] developed jointly by an
industry coalition. An actual RTTI object referenced by the virtual function table depends
on the inheritance type of class it represents:

• No inheritance – __class_type_info structure is used. It contains no information ex-
cept a reference to class name inherited from the type_info base;

• Single inheritance – __si_class_type_info contains reference to the parent’s RTTI;

• Multiple inheritance – __vmi_class_type_info contains array of structures describing
all base classes, as well as inheritance type flags.

2..*

type_info

class_name : char*

__si_class_type_info

__base_type : __class_type_info*

__vmi_class_type_info

__flags : int (__flags_masks)

__base_count : int
__base_info : __base_class_type_info[]

__base_class_type_info

__base_type : __class_type_info*

__offset_flags : long (__offset_flags_masks)

«enumeration»
__flags_masks

__non_diamond_repeat_mask = 0x1

__diamond_shaped_mask = 0x2

«enumeration»
__offset_flags_masks

__virtual_mask = 0x1

__public_mask = 0x2

__offset_shift = 0x8

__class_type_info

Figure 3.4: RTTI structure used by GCC and Clang compilers.
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3.2.2 MSVC
Run-Time Type Information used by MSVC compiler is shown in the form of an UML
diagram in Figure 3.5. It consists of these entities:

• Complete_object_locator – is the main structure referenced by virtual function table.
It contains references to class type descriptor and class hierarchy. It is possible, that
one class have several of these structures;

• RTTI_type_descriptor – describes data type, including its name. Name is always
mangled with prefix .?AV;

• RTTI_class_hierarchy – contains array of base class references. The first element is
class’s own base class descriptor.

• RTTI_base_class_descriptor – describes one parent.

1..*

Complete_object_locator

signature : int
offset : int
cdOffset : int
pTypeDescriptor : RTTI_type_descriptor*

pClassDescriptor : RTTI_class_hierarchy*

RTTI_type_descriptor

vtable : address*

spare : int
name : char*

RTTI_class_hierarchy

signature : int
attributes : int
numBaseClasses : int
pBaseClassArray : address*

RTTI_base_class_array

ownBaseDesc : RTTI_base_class_descriptor*

parentBaseDesc : RTTI_base_class_descriptor*[]

RTTI_base_class_descriptor

pTypeDescriptor : address*

numContainedBases : int
memberOffset : int
COLAddressOffset : int
vtableOffset : int
attributes : int

Figure 3.5: RTTI structure in MSVC compiler.

3.3 Virtual functions
Even though C++ standard does not impose any specific implementation of dynamic dis-
patch, all major compilers support virtual methods, and therefore polymorphism, through
virtual function tables (i.e. vtables). Each table starts with a reference to RTTI structure
followed by an array of pointers to virtual functions. Therefore, the problem of locating
RTTI information and identifying virtual functions is reduced to finding all virtual tables.
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As was already outlined in Section 3.1, if class B inherits from class A, then B’s virtual
table is created (by compiler) from A’s table in two steps: (1) addresses of A’s virtual
functions that are overridden in B are replaced with new addresses, and (2) addresses of
new virtual functions are appended to the end of the table. In case of a virtual inheritance,
location of parent’s vtable is not fixed and table offsets of all ancestors must be checked.
GCC and Clang solve this by adding a virtual table offset before the table itself. MSVC
generates a so-called virtual base table (i.e. vbtable) containing parents’ vtable offsets.

Virtual function tables resides in binarie’s data section (typically in read only data, i.e.
.rodata), and can be found by analysing each word in the section using these two rules:

• If the current word is a reference to a function (i.e. address in code segment) and it
itself is referenced from the code segment, then it is consider a virtual table start.

• Consequent vtable entries must be unreferenced function addresses. Virtual table
ends on the first word that is not a function address or is referenced from code.

RTTI*0
.rodata

fnc1*4

fnc2*8

RTTI for Polygon
.rodata

Polygon::∼Polygon()
.text

Polygon::area()

.text

Figure 3.6: Virtual function table for the Polygon class from Figure 2.5.

3.4 Virtual function inheritance hierarchy
Run-Time Type Information introduced in Section 3.2 is frequently misused, and its gen-
eration is therefore often disabled. Some more complex C++ projects (e.g. Qt, LLVM)
are also refraining from using it, since it introduces unnecessary overhead or is not strong
enough. Therefore, in some cases the RTTI base approach to class hierarchy recovery is
useless. Fortunately, virtual tables are always generated and can be used to infer hierarchy
instead of RTTI. Unfortunately, the uniqueness of vtables is not guaranteed (i.e. a single
vtable might be shared between multiple classes), what complicates the whole process. The
following is a brief description of technique presented in [11].

Hierarchy inference runs after all vtables were identified using the algorithm from pre-
vious section. The method presumes that each vtable inherits from at most one parent
virtual table, since it can not handle virtual inheritance. For two vtables A and B, A is a
direct base of B if one of the classes corresponding to A is a direct base of one of the classes
corresponding to B. A and B relationship can then be one of the following:

13



• Vtable B inherits from A is denoted as B.A;

• Vtable A does not inherit from B is denoted as A 6 .B;

• Vtable A inherits from B, or B inherits from A is denoted as A∼ B.

The following rules are used to reconstruct inheritance relation on a set of virtual tables:

1. If the size of vtable A is less then the size of vtable B, then A cannot inherit from B:
(A 6 .B).

2. If virtual function A_i (i-th virtual function in vtable A) is pure and virtual function
B_i is not, then vtable A cannot inherit from vtable B: (A 6 .B).

3. If sizes of parameters of the virtual functions A_i and B_i are different, then neither
vtable A inherits from vtable B, nor B inherits from A: (A 6 .B∨B 6 .A).

All of these rules are dealing with cases, when one virtual table can not inherit from some
other vtable. In order to infer positive relationships (i.e. A does inherit from B), the addi-
tional information provided by constructor and destructor analysis is used.

3.5 Constructor and destructor identification
Current state-of-the-art decompilers detect constructors and destructors only for polymor-
phic classes, since non-polymorphic ones do not differ from ordinary functions. They are
detected based on the operations they need to perform [13]. Class constructors have to ex-
ecute the following sequence of steps (taken from [11]) in order to initialise their objects:

1. call constructors of direct base classes;

2. call constructors of data members;

3. initialise vtable pointer field(s) and perform user-specified initialisation code in the
body of the constructor.

A destructors performs operations in reverse order (taken from [11]):

1. initialise vtable pointer field(s) and perform user-specified destruction code in the
body of the destructor;

2. call destructors of data members;

3. call destructors of direct bases.

Constructors and destructors can be therefore located by detecting consequent virtual table
pointer fields initialisations. Moreover, the initialisation order can be used to distinguish
constructors from destructors, as well as infer the class hierarchy. For example, constructor
and destructor executions for class C from hierarchy in Figure 3.7 are shown in Figures 3.9
and 3.10. In constructor, vtable pointer entries are overwritten after the call to parent con-
structor in a base-to-derived order. On the contrary, destructor first overwrites vtable pointer
members in a derived-to-base order and than calls the parent destructor. Based on this in-
formation, it is not only possible to decide which functions are constructors and which
destructors, but we can also find out that class C inherits from class B and B from A.

14



A

B

C

Figure 3.7: Class hierarchy example.

void∗

A∗

B∗

C∗

D∗

E∗ F∗

unknown∗

Figure 3.8: Type lattice example. UML
notation is used to denote class inheritance.

vtable_init

vtable_init

vtable_init

C::C B::B A::A

Figure 3.9: Constructor execution for class C

from Figure 3.7. Initialisation of vtable
pointer members is denoted by

vtable_init callback.

vtable_init

vtable_init
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Figure 3.10: Destructor execution for class C

from Figure 3.7. Initialisation of vtable
pointer members is denoted by

vtable_init callback.

3.6 Class pointers
As was already mentioned in Section 3.1, there is a problem with class pointer propagation.
All algorithms for language C type reconstruction [23, 24, 9, 31] rely on assumption that
copies of the same pointer always reference the same type. This is clearly broken by poly-
morphic class pointers, since they can point to objects of many different classes. A final
pointer type must be compatible with all the types that can be assigned to it. That means,
it is either a common superclass or generic void* pointer. A lattice model for pointers is
used to decide. At first, class hierarchy is reconstructed, then a type lattice (C,.) is build.
The set of pointer types C consists of:

• the pointers to all recovered class types;

• void* pointer as top;

• special unknown pointer as bottom.
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The partial order . is defined by the inheritance relation on a set of classes with addition of
the following elements:

• For all A ∈ C that are the roots of inheritance hierarchy, A. void*.

• For all A ∈ C that are the leafs of inheritance hierarchy, unknown .A.

Hasse diagram for lattice created for example in Figure 3.7 is shown in Figure 3.8. At
first, all pointer types are unknown. Then, each assignment sets its type to the least common
ancestor of its current type. At the end, each pointer is of the superclass or void* type.

3.7 Ordinary member functions
Apart from the virtual function identification, it would be desirable to find out which func-
tions are ordinary member functions and to what class they belong. However, this task can
not be achieved in GCC and Clang, where this pointer is passed as a hidden first param-
eter. In such a case, methods become indistinquishable from traditional C style functions
unassociated with any class. However, MSVC compiler is using __thiscall calling conven-
tion, where this pointer is always passed in ECX register. Therefore, associated class can be
reliably infered from the type of register object.

3.8 Exception handling
C++ standard defines only the exception handling semantics described in Section 2.4. The
implementation is left to compiler developers. Therefore, MSVC is using a different ap-
proach than GCC and Clang. In any case, EH implementation involves fairly low-level
manipulation, which is not easy to express in the C language terms. Proper exception han-
dling reconstruction demands modifications of several decompilation analyses, otherwise
the quality of produced code is very poor. The following basic EH implementation princi-
ples can be used to recover throw statements and try and catch blocks:

• In order to reflect the current program’s state, MSVC compiler generates code, which
is repeatedly updating the exception handling structures. Each function gets its own
stack frame element containing information on exception handlers accessible from
the associated function. This data is used by the run-time support library to execute
the correct EH.

• On the other hand, GCC and Clang compilers use a table-driven approach with no
run-time overhead when exceptions are not actually used. Tables map program
counter ranges to their program state. Therefore, they can be used by a run-time
look up to identify appropriate handler based on the execution’s position at the time
of an exception throw.

An exact reconstruction procedure is fairly complex and will not be covered in detail in
this paper. See article [11] for more details.
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3.9 Standard library function recognition
With the C++ standard library comes a lot of new standard functions that can be used
by programmers in their applications. Recognising calls of such functions and exploiting
their known declarations can greatly improve decompiled code’s quality. Standard library
functions can be linked to programs in two different ways:

• Dynamically linked functions are not actually appended to user programs. They are
located in shared libraries, that are loaded alongside user applications. All function
calls are indirect through a so-called stubs—jumps whose target addresses are fixed to
actual standard functions’ locations by the dynamic linker during loading of program
into memory. In order to perform such a loading, linker must known which functions
from which libraries is application going to need. Therefore, binary must contain all
of the necessary information to identify required functions. This information can be
exploited by the decompiler to replace jumps with the original function calls. More-
over, if the decompiler has a database of known function prototypes, which contains
information about functions’ parameters and their data types, it can reconstruct calls
precisely and propagate type information to other objects.

• Statically linked functions are appended to user programs and do not require any
additional run-time library interaction. If the application is stripped (i.e. symbol
names are removed), they become indistinguishable from user defined functions and
greatly complicates any further analysis. To identify such functions, signature based
solutions like IDA Pro FLIRT technology or generic detection of statically linked
code described in [34, 33] is used. Combined with known function prototypes, it is
possible to identify most of such functions and achieve the same high quality output
as in the previous case.
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Chapter 4

Possible research areas

This chapter is discussing possible research directions that could be explored in the future.
Even though some of the ideas have already been proposed, or even implemented to some
extent, there currently is not a usable retargetable decompiler that would integrate them
into a single reverse engineering framework.

4.1 Debugging information utilisation
Debugging information is generated by compilers in order to enable debugging process of
finding and fixing software bugs. Since it contains many source-code-level data mapped to
machine code, it may be exploited in the process of executable file analysis. The typical
use in reverse engineering is to evaluate accuracy of the analysis by comparing its result
against debugging information. This approach was used in [30], where the readelf utility
was used to extract debugging data, or in [21] and [10] by utilising the libdwarf library. It
is however not clear whether any of these tools is capable to incorporate such information
to its algorithm and produce more accurate output because of it, or if they are limited to
accuracy evaluation only. Since most of the executable analysis applications are dependent
on a particular architecture and platform it is also unlikely that any of them is able to process
different debugging formats. Moreover, all of these works are focused on the C language
analysis, and are probably unable to make use of any C++ related information.

For this reasons, it would be the best to continue in the direction presented in [20]
and [19]. These papers describe two new mid-layer libraries supporting manipulation of
the two major debugging information formats: Unix DWARF and Microsoft PDB. As is
the case in the previously mentioned works, both libraries are currently focused only on
the C language related constructions. However, it would not be complicated to expand
their functionality by parsing of C++ object-oriented features. The goal is not only to use
this information for analysis evaluation, but to fully incorporate it into the decompiler’s
analyses in order to achieve very high quality output.
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4.2 Name demangling
Name mangling is a process of encoding additional information in the various source-level
names in order to solve problems caused by the need for unique entity names. Fortunately
for reverse engineering, the additional semantic information can be used to obtain knowl-
edge about functions, structures, classes, namespaces etc. Unfortunately, the C++ standard
does not define a common decoration scheme and each compiler vendor is free to use its
own. This greatly complicates utilisation of encoded information, but at the same time
offers an opportunity to solve the problem once and for all by creating a retargetable de-
mangler. Although some decompilers like Hex-Rays [16] can demangle mangling schemes
used by the most popular C++ compilers, it does so only to display the original name. Ac-
tual modification of output code (i.e. recovering function arguments and their types) is not
performed.

A simple example of possible mangling is shown in Figure 4.1. Two different functions
with the same name are distinguished by the compiler based on their parameters. To make
linking possible, number and types of their arguments are encoded into their names. If these
names make it into the binary (i.e. they are not stripped), it is possible for a decompiler to
precisely recover this information, provided it is familiar with the used mangling scheme.

int fnc (void); // mangled name = __f_v
int fnc (int); // mangled name = __f_i

Figure 4.1: Example of a simple function name mangling in the C++ language.

4.3 Method classification
As far as the method semantics identification goes, all known C++ decompilation tech-
niques are focused on constructor and destructor recognition in order of class hierarchy
reconstruction. This reconstruction is based on the sequence of steps that must be carried
out by these special methods (see Section 3.5). However, constructors and destructors are
not the only functions which behaviour is prescribed by the language standard. Similar
demands on responsibilities applies to some other functions such as: copy constructors or
class allocation and de-allocation routines created from new and delete operators. Further
analysis and classification of methods or code snippets could prove useful for the analyst
trying to comprehend decompiled source codes.

4.4 Template recognition
As was explained in Section 2.3, compiler creates as many variations of template functions
or classes as many different types are used to instantiate the template. Despite the fact
all of them are generated from the common blueprint, they might be vastly different. For
example, template function in Figure 2.6 has two parameters and a return value of the same
type, and is using a ternary operator. This basic structure will be the same for all instances.
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However, operator < (less than) is probably going to be implemented differently for each
data type. So, the question that might be answered in the future is: “Is it somehow possible
to identify methods generated by compiler from the common template?”

4.5 C++11 decompilation
The current C++ standard from 2011 [13] and the upcoming 2014 revision [14] significantly
changed C++. From the reverse engineering point of view, introduced features can be
divided into two groups.

1. Features providing syntactic sugar (e.g. auto, initializer lists) or other constructions
removed by compiler and indistinguishable on the machine code level.

2. Features that might be recognised in machine code and recovered back to the high
level representation.

Finding out, which new features are in the former category and how can they be recon-
structed will definitely be a subject to the further research.

4.6 Dynamic analysis
All of the techniques introduced so far are performed without actually executing analysed
programs. Such methods are called static and they have several advantages over the dy-
namic program analysis, which needs to execute inspected programs. Execution introduces
a whole range of problems such as security concerns, code coverage, sufficient test inputs
or analysis speed. One of the biggest problems is also the need for an adequate testing
environment and instrumentation tool. For example, it would be impossible to run MIPS
executable on x86 workstation without some kind of virtual processor. Moreover, just
running the program would be pointless without the means to instrument its instructions.
Despite these obvious drawbacks, dynamic analysis is often capable to achieve much better
results than the static one. Quality can be further enhanced by combining the results of
both approaches. The examples of dynamic analysis in C/C++ binary reverse engineering
can be found in [18, 7, 15, 30].

However, all of these efforts are either tied to a particular architecture (e.g. by using
Intel PIN instrumentation tool [17]) or are not fully integrated into a full-scale decompiler.
Therefore, a primarily static retargetable reverse compiler capable of improving its results
with information obtained by program execution is yet to be developed.
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Chapter 5

Conclusion

This paper is addressing the issue of C++ decompilation. It reviews most of the existing
techniques as well as outlines new promising areas for the future research. The ultimate
goal is to create all-in-one reverse engineering framework, capable of all state-of-the-art
analyses plus as many of the proposed techniques as possible. It should be also truly retar-
getable, i.e. independent on any particular target architecture, compiler, object file format
or operating system. An ideal foundation for such C++ reversing tool is Retargetable De-
compiler [5] developed in cooperation of Faculty of Information Technology from Brno
University of Technology, and AVG technologies. The decompiler can already translate
x86, ARM+Thumb, MIPS, PowerPC and Pic32 binaries in PE and ELF file formats into C
language high level representation. Author’s future work will be to expand its capabilities
by adding the C++ decompilation support.

Such a tool would found use in the field of malware analysis. It would significantly
ease up and speed up the process of manual program inspection, especially in case of
more complicated malicious programs written in C++. Example of a possible use in order
of static detection of C++ virtual table escape vulnerabilities can be found in [8]. Other
benefits of such a tool are described in [32].
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