Simulation of Scattered Context Grammars and Phrase-Structured Grammars by Symbiotic EOL Grammars

Programming language theory

Abstract

This paper contains more examples to formerly introduced concept of formal language equivalency. That is, for two models, there is a substitution by which we change each string of every yield sequence in one model so that sequence ofs string resulting from this change represents a yield sequence in the other equvalent model, these two models closely simulates each other; otherwise they do not. In this paper are shown two cases of such simulations.

Contents

Contents 3
1 Introduction 4
2 Preliminaries 4
3 Simulation of Scattered Context Grammars 5
4 Simulation of Phrase-Structured Grammars 9
5 Derivation simulations 12
5.1 Definitions. 12
5.2 Derivation simulation of Scattered Context Grammars 14
5.3 Derivation simulation of Phrase-Structured Grammars 16
6 Conclusion 18
References 19

1 Introduction

In the [1] was introduced quite new method of compraing two grammatical systems. Before this paper there was almost vague comparations of grammars limited by similarity of generated languages. This new approach comes with comparing not only generated languages but also similarity of generating process.

Because we have many different transformations from one type of grammar to another in the theory of formal languages, we sometimes want to describe similarity of such converted grammars. On the second hand, we need to examine this similarity in the practice. For example we try to find some usable representation of some grammar for use in a compiling system. We can do some transformations but we still want to achieve same result in new grammar with almost same number of derivation steps and so on.

So, the concepts of m-close simulation and some others were introduced in [1].
In the section 2 are recalled some well-known notions of the formal language theory. Section 3 introduces new conversion from scattered context grammars to symbiotic E0L grammrs. Similar conversion from phrase-structured grammars is described in Section 4 , Next section deals with description of derivation simulations from previous two sections. Here are repeated some needed definitions of concepts of derivation similarity and proved two theorems about previous conversions. Section 6 includes proved results as a whole.

2 Preliminaries

This paper assumes that the reader is familiar with the language theory (see [2], [4, [6]).
Let V be an alphabet. V^{*} denotes the free monoid generated by V under the operation of concatenation. Let ε be the unit of V^{*} and $V^{+}=V^{*}-\{\varepsilon\}$. Given a word, $w \in V^{*},|w|$ represents the length of w and $\operatorname{alph}(w)$ denotes the set of all symbols occuring in w. Moreover, $\operatorname{sub}(w)$ denotes the set of all subwords of w. Let R be a binary relation on a set W. Instead of $u \in R(v)$, where $u, v \in W$, we write $v R u$ in this paper.

A scattered context grammar is an ordered quadruple $G=(V, T, P, S)$, where V, T, and S are the total alphabet of G, the set of terminals $T \subseteq V$, and the axiom $S \in V-T$, respectively. P is a finite set of productions of the form $\left(A_{1}, \ldots, A_{n}\right) \rightarrow$ $\left(x_{1}, \ldots, x_{n}\right)$, for some $n \geq 1$, where $A_{i} \in V-T$ and $x_{i} \in V^{*}$ form $1 \leq i \leq n$. If $p \in$ P is of the form $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right), u=u_{1} A_{1} u_{2} A_{2} \ldots u_{n} A_{n} u_{n+1}, v=$ $u_{1} x_{1} u_{2} x_{2} \ldots u_{n} x_{n} u_{n+1}$, where $u_{i} \in V^{*}$, for $i=1,2, \ldots, n$, then u directly derives v in G according to p, denoted by $u \Rightarrow_{G} v[p]$ or, simply $u \Rightarrow v$. In a standard manner, we extend \Rightarrow_{G} to \Rightarrow_{G}^{n}, where $n \geq 0$, and based on \Rightarrow_{G}^{n}, we define \Rightarrow_{G}^{*}, which is transitive and reflexive closure of \Rightarrow. Let $S \Rightarrow_{G}^{*} x$ is called a successful derivation. The language of $G, L(G)$, is defined as $L(G)=\left\{x: S \Rightarrow_{G}^{*} x, x \in T^{*}\right\}$. For any $p \in P$ of the form $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, left (p) means string $A_{1} A_{2} \ldots A_{n}$ and $\operatorname{right}(p)$ string $x_{1} x_{2} \ldots x_{n}$.

A phrase-structured grammar is and ordered quadruple $G=(V, T, P, S)$, where V, T, and S are the total alphabet of G, the set of terminals $T \subseteq V$, and the axiom $S \in V-T$, respectively. P is a finite set of productions of the form $x \rightarrow y$, where $x \in V^{+}$and
$y \in V^{*}$. If $p \in P$ is of the form $x \rightarrow y, u=u_{1} x u_{2}, v=u_{1} y u_{2}$, where $u, v \in V^{*}$, then u directly derives v in G according to p, denoted by $u \Rightarrow_{G} v[p]$ or, simply $u \Rightarrow v$. In a standard manner, we extend \Rightarrow_{G} to \Rightarrow_{G}^{n}, where $n \geq 0$, and based on \Rightarrow_{G}^{n}, we define \Rightarrow_{G}^{*}, which is transitive and reflexive closure of \Rightarrow. Let $S \Rightarrow_{G}^{*} x$ is called a successful derivation. The language of $G, L(G)$, is defined as $L(G)=\left\{x: S \Rightarrow_{G}^{*} x, x \in T^{*}\right\}$. For any $p \in P$ of the form $x \rightarrow y$, left (p) means string x and $\operatorname{right}(p)$ string y.

A symbiotic E0L grammar (see [3) is a quadruple $G=(W, T, P, S)$, where W, T, and S are the set of generators $W \subseteq\left(V \cup V^{2}\right)$, the set of terminals $T \subseteq V$, and the axiom $S \in V-T$, respectively. P is a finite set of productions of the form $A \rightarrow x, A \in V$, $x \in V^{*}$. The direct derivation relation is defined in the following way: let $x, y \in W^{*}$ such that $x=a_{1} a_{2} \ldots a_{n}, a_{i} \in V, y=y_{1} y_{2} \ldots y_{n}, y_{i} \in V^{*}$, and productions $a_{i} \rightarrow y_{i} \in P$ for all $i=1, \ldots, n$. Then, x directly derives $y, x \Rightarrow_{G} y$ in symbols. The language of G is $L(G)=\left\{w \in T^{*}: S \Rightarrow_{G}^{*} w\right\}$.

3 Simulation of Scattered Context Grammars

Construction 1.

Input: A scattered context grammar, $G=(V, T, P, S)$
Output: A symbiotic E0L grammars, G^{\prime}
Algorithm: At first, we introduce a new alphabet, $V^{\prime}=V \cup\left\{@, \#, S^{\prime}\right\} \cup V^{\prime \prime} \cup \widetilde{T}, \widetilde{T}=$ $\{\widetilde{a}: a \in T\}, V^{\prime \prime}=\{\langle i, j\rangle: 0<i \leq \operatorname{Card}(P), 0 \leq j \leq k\}$. Let τ be a homomorphism from T to \widetilde{T} such that $\tau(a)=\widetilde{a}$ for all $a \in T$. Define a language W, over V^{\prime} as $W=V \cup$ $\left\{@, \#, S^{\prime}\right\} \cup \widetilde{T} \cup\{\langle i, j\rangle\langle i, j\rangle: 0<i \leq \operatorname{Card}(P), 0 \leq j \leq k\}$. Then, construct a symbiotic E0L grammar $G^{\prime}=\left(W, T, P^{\prime}, S^{\prime}\right)$, where the set of productions is defined in the following way:

1. add $S^{\prime} \rightarrow @ S \#$ to P^{\prime};
2. for every production $n:\left(A_{1}, A_{2}, \ldots, A_{k}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in P$ add these rules to P^{\prime} (where n is a label, $0<\leq \operatorname{Card}(P)$:

$$
\begin{aligned}
A_{1} & \rightarrow\langle n, 0\rangle \tau\left(x_{1}\right)\langle n, 1\rangle \\
A_{2} & \rightarrow\langle n, 1\rangle \tau\left(x_{2}\right)\langle n, 2\rangle \\
& \vdots \\
A_{k} & \rightarrow\langle n, k-1\rangle \tau\left(x_{k}\right)\langle n, k\rangle
\end{aligned}
$$

3. add @ \rightarrow @ $\langle i, 0\rangle, 0<i \leq \operatorname{Card}(P)$ to $P^{\prime} ;$
4. add $\# \rightarrow\langle i, k\rangle \#$, to P^{\prime} for each production $i:\left(A_{1}, A_{2}, \ldots, A_{k}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in$ P;
5. add @ $\rightarrow \varepsilon$;
6. add $\# \rightarrow \varepsilon$;
7. for each $A \in V \cup \widetilde{T}$ add productions of this form to $P^{\prime}: A \rightarrow\langle i, j\rangle A\langle i, j\rangle, 0<i \leq$ $C \operatorname{ard}(P), 0 \leq j \leq k ;$
8. add these productions to $P^{\prime}:\langle i, j\rangle \rightarrow \varepsilon, 0<i \leq \operatorname{Card}(P), 0 \leq j \leq k$;
9. add production $\widetilde{a} \rightarrow a$ for each $a \in T$ to P^{\prime}.

Theorem 1. Let $G=(V, T, P, S)$ be a scattered context grammar. Let G^{\prime} be a symbiotic E0L grammar constructed by Construction 1 with G as its input. Then, $L(G)=L\left(G^{\prime}\right)$.

Proof. Let ω be a homomorphism from V^{\prime} to $V^{\prime}-V^{\prime \prime}$ defined as $\omega(a)=\varepsilon$ for all $a \in V^{\prime \prime}$, and $\omega(a)=a$, for all $a \in V^{\prime}-V^{\prime \prime}$.

Claim 1. For every $w \in W^{*}$ holds,

1. $S^{\prime} \Rightarrow_{G}^{+} w$ if and only if $@ S \# \Rightarrow_{G}^{*} w$;
2. $S^{\prime} \Rightarrow_{G}^{+} w$ implies $S^{\prime} \notin \operatorname{sub}(w)$.

Proof. By the definition of P^{\prime}, it is easy to see that the very first derivation step always rewrites S^{\prime} to @ $S \#$. Moreover, no productions generate S^{\prime}; thus, S^{\prime} appears in no sentential form derived from S^{\prime}.

Claim 2. For all $u, v \in W^{+}, S^{\prime} \notin \operatorname{sub}(u v), u \Rightarrow_{G^{\prime}} v$ if and only if $\omega(u) \Rightarrow_{G^{\prime}} v$.
Proof. Examine the definition of P^{\prime}. Clearly, all occurrences of symbols from $V^{\prime \prime}$ are always erased during $u \Rightarrow_{G^{\prime}} v$, so they play no role in the generation of v. By the definition of W and $\omega, \omega(u) \in W^{*}$; therefore $\omega(u) \Rightarrow_{G^{\prime}}$ is a valid derivation in G^{\prime}.

Note that this property of derivations in G^{\prime} allows us to ignore symbols of the form $\langle i, j\rangle$ occuring in left-hand sides of derivation steps.

Claim 3. Let @y\# $\Rightarrow_{G^{\prime}} @ x \#$, where $y=a_{1} a_{2} \ldots a_{n}$ for some $a_{i} \in V, x \in W^{*}, n \geq 0$. Then, $@ x \#=@\langle i, 0\rangle\langle i, 0\rangle x_{1}\langle i, 1\rangle\langle i, 1\rangle \ldots\langle i, 1\rangle\langle i, 1\rangle x_{m}\langle i, 2\rangle\langle i, 2\rangle x_{m+1}\langle i, 2\rangle\langle i, 2\rangle \ldots$ $\langle i, k-1\rangle x_{n}\langle i, k\rangle\langle i, k\rangle x_{n+1}\langle i, k\rangle \ldots x_{m}\langle i, k\rangle\langle i, k\rangle \#$, where $x_{j} \in V^{*}$ for all $j=1,2, \ldots$, m and some i.

Proof. Since x is surrounded by @ and $\#$ in @ $x \#, G^{\prime}$ surely rewrites @ $x \#$ in such way, that @ is rewritten to some @ $\langle i, 0\rangle$ and \# to $\langle j, k\rangle, 0 \leq i, j \leq \operatorname{Card}(P)$. Every A_{l} can be rewritten either to $\langle i, j\rangle x_{l}\langle i, j\rangle$ or (if such production exists) to $\langle i, j-1\rangle x_{l}\langle i, j\rangle$, where $0<i \leq \operatorname{Card}(P), 0 \leq j \leq k, x_{i} \in V^{*}$. Thus, @x\# $=@\langle i, 0\rangle \alpha_{1} z_{1} \beta_{1} \alpha_{2} z_{2} \beta_{2} \ldots \alpha_{n} z_{n} \beta_{n}$ $\langle j, k\rangle \#$ with $\alpha_{l}=\langle i, j\rangle, z_{l}=x_{l}, \beta_{l}=\langle i, j\rangle$, or $\alpha_{l}=\langle i, j-1\rangle, z_{l}=x_{l}, \beta_{l}=\langle i, j\rangle$, for all $l=1,2, \ldots n$. However, @x\# must be a string over W. Inspect the definition of W to see that $@ x \# \in W^{*}$ if and only if $\alpha_{1}=\langle i, 0\rangle$ and $\beta_{n}\langle i, k\rangle$. Then, β_{1} could be only $\langle i, 0\rangle$ or $\langle i, 1\rangle$. In same way α_{n} could be only $\langle i, k\rangle$ or $\langle i, k-1\rangle$. We can simply show, that we can get only sentential form $@ x \#=@\langle i, 0\rangle\langle i, 0\rangle x_{1}\langle i, 1\rangle\langle i, 1\rangle \ldots\langle i, 1\rangle\langle i, 1\rangle x_{m}\langle i, 2\rangle$ $\langle i, 2\rangle x_{m+1}\langle i, 2\rangle\langle i, 2\rangle \ldots\langle i, k-1\rangle x_{n}\langle i, k\rangle\langle i, k\rangle x_{n+1}\langle i, k\rangle \ldots x_{m}\langle i, k\rangle\langle i, k\rangle \#$.

Claim 4. Let $@ y \# \Rightarrow_{G^{\prime}}$ x, where $y=a_{1} a_{2} \ldots a_{n}$ and $\{@, \#\} \cap \operatorname{sub}(x)=\emptyset$ for some $a_{i} \in V, x \in W^{*}, n \geq 0$. Then, $x=\langle i, 0\rangle\langle i, 0\rangle \tau\left(t_{1}\right)\langle i, 0\rangle \ldots\langle i, k\rangle \tau\left(t_{n}\right)\langle i, k\rangle\langle i, k\rangle$, where $t_{i} \in T^{*}$ for all $i=1,2, \ldots, n$.

Proof. Prove this claim by analogy with the proof of Claim 3.
The following claim shows that Claims 3 and 4 cover all possible ways of rewriting of a string having the form $@ y \#, y \in V^{*}$, in G^{\prime}.

Claim 5. Let @y\# $\Rightarrow_{G^{\prime}} u, y \in V^{*}$. Then, either $u=@ x \#, x \in W^{*}$, or $u \in W^{*}, \omega(u) \in$ T^{*}, and $\{@, \#\} \cap \operatorname{sub}(u)=\emptyset$.

Proof. Return to the proof of Claim 3. Suppose that @ is rewritten to @ $\langle i, 0\rangle$ and \# is rewritten to ε. Then we can construct only strings of the form $z=@ x\langle i, j\rangle y\langle i, k\rangle$, where $x \in W^{*}, y \in V^{*}$ and last symbol of y is from $V-V^{\prime \prime}$. It is clear, that $z \notin W^{*}$. Analogously, suppose that @ is rewritten to ε and \# is rewritten to $\langle i, k\rangle \#$. As before, such a sentential form is out of W^{*}.

Claim 6. Let $u \Rightarrow_{G^{\prime}} v, u \in W^{*},\{@, \#\} \cap \operatorname{sub}(u)=\emptyset$. Then $v \in T^{*}$.
Proof. From the Claim 5 we see, that $\omega(u) \in T^{*}$. Then, we have to consider only productions with its left sides from \widetilde{T}, because it is the only possibility. Such productions are of the form $\widetilde{t} \rightarrow\langle i, j\rangle t\langle i, j\rangle$ or $\tilde{t} \rightarrow t$, where $t \in T, 0<i \leq \operatorname{Card}(P), j \geq 1$. Then, string v could have one of the following forms:

1. $u=\langle i, j\rangle t\langle i, j\rangle y, t \in T, 0<i \leq \operatorname{Card}(P), 0 \leq j, y \in\left(V^{\prime \prime} \cup T\right)^{*}$;
2. $u=x\langle i, j\rangle t\langle i, j\rangle y, x \in T^{*}, t \in T, y \in\left(V^{\prime \prime} \cup T\right)^{*}$;
3. $u=t_{1} t_{2} \ldots t_{n}, t_{i} \in T$.

It is easy to see, that only third form is the legal one. The others are out of W.
Claim 7. Every derivation in G^{\prime} is a prefix of

$$
\begin{aligned}
& S^{\prime} \Rightarrow_{G^{\prime}} @ w_{0} \# \\
& \Rightarrow_{G^{\prime}} @ w_{1} \# \\
& \vdots \\
& \vdots \\
& \Rightarrow_{G^{\prime}} @ w_{n} \# \\
& \Rightarrow_{G^{\prime}} \\
& \Rightarrow_{G^{\prime}} \\
& t
\end{aligned}
$$

where $w_{0}=S, w_{i} \in W^{*}, \omega(u)=\tau(t), t \in T^{*}, 0 \leq i \leq n, n \geq 0$.

Proof. By the proof of Claim 1, S^{\prime} is always rewritten to @ $w_{0} \#$, where $w_{0}=S$. Then, Claim 5 tells us that there are two possible forms of derivations rewriting $\omega\left(@ w_{i} \#\right)$ and, hence, @ $w_{i} \#$. First, G^{\prime} can generate a sequence of n sentential forms that belong to $\{@\} W^{*}\{\#\}$, for some $n \geq 0$ (their form is described in Claim 3). Second, G^{\prime} can rewrite @ $w_{n} \#$ to $u \in W^{*}$, satisfying $\omega(u) \in \widetilde{T}^{*}$ (see Claim 4). By the Claim 6 the only form, to which could be rewritten u is t. Therefore, $u \Rightarrow_{G^{\prime}} t$ such that $t \in T^{*}$ and $\omega(u)=\tau(t)$. After that, no other derivation step can be made from t because P^{\prime} contains no production that rewrites terminals.

Claim 8. For all $x, y \in V^{*}, u \in W^{*}$ it holds

$$
y \Rightarrow_{G} x \text { if and only if @y\# } \Rightarrow_{G^{\prime}} @ u \#
$$

where $x=\omega(u)$.
Proof. Let $b=b_{1} b_{2} \ldots b_{n}, b_{i} \in V$ and $x \in V^{\prime \prime}$, then $\gamma(b, x)=x b_{1} x x b_{2} x \ldots x b_{n} x$.
Only If: Let $y \Rightarrow_{G} x$. Express y and x as $y=a_{1} A_{1} a_{2} A_{2} \ldots a_{n} A_{n} a_{n+1}$ and $x=$ $a_{1} x_{1} a_{2} x_{2} \ldots a_{n} x_{n} x_{n+1}$ and corresponding production from $P: l:\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, which is applied during $y \Rightarrow_{G} x$. Then, for such production exist n corresponding productions in P^{\prime} (see Construction 11). Then, with use of Claim 3, we can construct @y\# $\Rightarrow_{G^{\prime}} @\langle l, 0\rangle \gamma\left(a_{1},\langle l, 0\rangle\right)\langle l, 0\rangle x_{1}\langle l, 1\rangle \gamma\left(a_{2},\langle l, 1\rangle\right)\langle l, 1\rangle\langle l, 2\rangle \ldots\langle l, n\rangle \gamma\left(x_{n-1}\right.$, $\langle l, n-1\rangle)\langle l, n-1\rangle x_{n}\langle l, n\rangle \gamma\left(x_{n+1},\langle l, n\rangle\right)\langle l, n\rangle \#$, where $\gamma(b, x), a \in V^{*}, x \in V^{\prime \prime}$ is defined as this: Obviously, $\omega(y)=a_{1} x_{1} a_{2} x_{2} \ldots a_{n} x_{n} x_{n+1}=x$.

If: Let @y\# $\Rightarrow_{G^{\prime}} @ u \#$. Express y as $y=a_{1} a_{2} \ldots a_{n}, a_{i} \in V, n \geq 0$. By the proof of Claim 3 we can see, that each a_{i} could be rewritten to $\langle l, m\rangle x_{i}\langle l, m\rangle$ or to $\langle l, m-1\rangle x_{i}$ $\langle l, m\rangle$ (by the proof of Claim 2 we ignore $a_{i} \in V^{\prime \prime}$). In the first case it corresponds to use no rule in G. In the second case there will be (by the proof of the claim) n such cases corresponding to use productions derived from original production $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Then, $y \Rightarrow_{G} x$ such that $x=x_{1} x_{2} \ldots x_{n}=\omega(u)$.

Claim 9. For all $t \in T^{*}, y \in V^{*}, u \in W^{*}$, it hold

$$
y \Rightarrow_{G} t \text { if and only if @y\# } \Rightarrow_{G^{\prime}} u
$$

where $\tau(t)=\omega(u)$.
Proof. By the analogy with the proof of Claim 8 .
From the above claims, it is easy to prove that

$$
S \Rightarrow_{G}^{*} t \text { if and only if } S^{\prime} \Rightarrow_{G^{\prime}}^{+} t
$$

for all $t \in T^{*}$.
Only If: Let $S \Rightarrow_{G} v_{1} \Rightarrow_{G} v_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} v_{n} \Rightarrow_{t}$ for some $n \geq 0$. Then, there exists $S^{\prime} \Rightarrow_{G^{\prime}} @ S \# \Rightarrow_{G^{\prime}} @ w_{1} \# \Rightarrow \Rightarrow_{G^{\prime}} @ w_{2} \# \Rightarrow_{G^{\prime}} \ldots \Rightarrow_{G^{\prime}} @ w_{n} \# \Rightarrow_{G^{\prime}} u \Rightarrow_{G^{\prime}}$, where $v_{i}=\omega\left(w_{i}\right)$ for all $i=1, \ldots, n$ and $\tau(t)=\omega(u)$.

If: By Claim 7. $S^{\prime} \Rightarrow_{G^{\prime}}^{+} t$ has the form $S^{\prime} \Rightarrow_{G^{\prime}} @ S \# \Rightarrow_{G^{\prime}} @ w_{1} \# \Rightarrow_{G^{\prime}} @ w_{2} \# \Rightarrow_{G^{\prime}}$ $\cdots \Rightarrow_{G^{\prime}} @ w_{n} \# \Rightarrow_{G^{\prime}} u \Rightarrow_{G^{\prime}} t, n \geq 0$. For this derivation we can construct $S \Rightarrow_{G} v_{1} \Rightarrow_{G}$ $v_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} v_{n} \Rightarrow_{G} t$ so that $v_{i}=\omega\left(w_{i}\right)$ for all $i=1, \ldots, n$.

Therefore, $L(G)=L(G)^{\prime}$, and the theorem holds.

4 Simulation of Phrase-Structured Grammars

Construction 2.

Input: A phrase-structured grammar, $G=(V, T, P, S)$
Output: A symbiotic E0L grammars, G^{\prime}
Algorithm: Introduce a new alphabet, $V^{\prime}=V \cup\left\{@, \#, \widetilde{@}, \widetilde{\#}, S^{\prime}\right\} \cup V^{\prime \prime} \cup \widetilde{T}, V^{\prime \prime}=$ $\{\langle i, j\rangle: 0<i \leq \operatorname{Card}(P), 0 \leq j \leq k\}, \widetilde{T}=\{\widetilde{a}: a \in T\}$. Let τ be a homomorphism from T to \widetilde{T} such that $\tau(a)=\widetilde{a}$ for all $a \in T$. Define a language W, over V^{\prime} as $W=$ $V \cup\left\{@, \#, \widetilde{@}, \widetilde{\#}, S^{\prime}\right\} \cup \widetilde{T} \cup\{\langle i, j\rangle\langle i, j\rangle: 0<i \leq \operatorname{Card}(P), 0 \leq j \leq k\}$. Then, construct a symbiotic E0L grammar $G^{\prime}=\left(W, T, P^{\prime}, S^{\prime}\right)$, where the set of productions is defined in the following way:

1. add $S^{\prime} \rightarrow @ S \#$ to P^{\prime};
2. for every production $n: X_{1} X_{2} \ldots X_{n} \rightarrow y \in P$ add these rules to P^{\prime} (where n is a label, $0<\leq \operatorname{Card}(P)$:

$$
\begin{aligned}
X_{1} & \rightarrow\langle n, 0\rangle \tau(y)\langle n, 1\rangle \\
X_{2} & \rightarrow\langle n, 1\rangle\langle n, 2\rangle \\
X_{3} & \rightarrow\langle n, 2\rangle\langle n, 3\rangle \\
& \vdots \\
X_{n} & \rightarrow\langle n, k-1\rangle\langle n, k\rangle
\end{aligned}
$$

3. add @ \rightarrow @ $\langle i, 0\rangle, 0<i \leq \operatorname{Card}(P)$ to $P^{\prime} ;$
4. add $\# \rightarrow\langle i, k\rangle \#$, to P^{\prime} for each production $i: X_{1} X_{2} \ldots X_{k} \rightarrow y \in P$;
5. add @ $\rightarrow \varepsilon$;
6. add $\# \rightarrow \varepsilon$;
7. for each $A \in V \cup \widetilde{T}$ add productions of this form to $P^{\prime}: A \rightarrow\langle i, j\rangle A\langle i, j\rangle, 0<i \leq$ $\operatorname{Card}(P), 0 \leq j \leq k ;$
8. add these productions to $P^{\prime}:\langle i, j\rangle \rightarrow \varepsilon, 0<i \leq \operatorname{Card}(P), 0 \leq j \leq k$;
9. add production $\widetilde{a} \rightarrow a$ for each $a \in T$ to P^{\prime}.

Theorem 2. Let $G=(V, T, P, S)$ be a phrase-structured grammar. Let G^{\prime} be a symbiotic E0L grammar constructed by Construction 图 with G as its input. Then, $L(G)=L\left(G^{\prime}\right)$.

Proof. Let ω be a homomorphism from V^{\prime} to $V^{\prime}-V^{\prime \prime}$ defined as $\omega(a)=\varepsilon$ for all $a \in V^{\prime \prime}$, and $\omega(a)=a$, for all $a \in V^{\prime}-V^{\prime \prime}$.

Claim 10. For every $w \in W^{*}$ holds,

1. $S^{\prime} \Rightarrow_{G}^{+} w$ if and only if $@ S \# \Rightarrow{ }_{G}^{*} w$;
2. $S^{\prime} \Rightarrow_{G}^{+} w$ implies $S^{\prime} \notin \operatorname{sub}(w)$.

Proof. By the definition of P^{\prime}, it is easy to see that the very first derivation step always rewrites S^{\prime} to @ $S \#$. Moreover, no productions generate S^{\prime}; thus, S^{\prime} appears in no sentential form derived from S^{\prime}.

Claim 11. For all $u, v \in W^{+}, S^{\prime} \notin \operatorname{sub}(u v), u \Rightarrow_{G^{\prime}} v$ if and only if $\omega(u) \Rightarrow_{G^{\prime}} v$.
Proof. Examine the definition of P^{\prime}. Clearly, all occurrences of symbols from $V^{\prime \prime}$ are always erased during $u \Rightarrow_{G^{\prime}} v$, so they play no role in the generation of v. By the definition of W and $\omega, \omega(u) \in W^{*}$; therefore $\omega(u) \Rightarrow_{G^{\prime}}$ is a valid derivation in G^{\prime}.

Note that this property of derivations in G^{\prime} allows us to ignore symbols of forms $\langle i, j\rangle$ occuring in left-hand sides of derivation steps.

Claim 12. Let $@ y \# \Rightarrow_{G^{\prime}} @ x \#$, where $y=a_{1} a_{2} \ldots a_{n}$ for some $a_{i} \in V, x \in W^{*}, n \geq 0$. Then, $@ x \#=@\langle i, 0\rangle\langle i, 0\rangle x_{1}\langle i, 0\rangle\langle i, 0\rangle x_{2}\langle i, 0\rangle \ldots\langle i, 0\rangle\langle i, 1\rangle x_{m}\langle i, 2\rangle\langle i, 2\rangle\langle i, 3\rangle\langle i, 3\rangle \ldots$ $\langle i, k\rangle\langle i, k\rangle x_{n}\langle i, k\rangle\langle i, k\rangle x_{n+1}\langle i, k\rangle \ldots\langle i, k\rangle \#$, where $x_{j} \in V^{*}$ for all $j=1,2, \ldots, m$ and some $0<i \leq \operatorname{Card}(P)$.

Proof. Since x is surrounded by @ and \# in @ $x \#, G^{\prime}$ surely rewrites @x\# in such way, that @ is rewritten to some @ $\langle i, 0\rangle$ and $\#$ to $\langle j, k\rangle, 0 \leq i, j \leq \operatorname{Card}(P)$. Every A_{l} can be rewritten either to $\langle i, j\rangle x_{l}\langle i, j\rangle$ or (if such production exists) to $\langle i, j-1\rangle x_{l}\langle i, j\rangle$, where $0<i \leq \operatorname{Card}(P), 0 \leq j \leq k, x_{i} \in V^{*}$. Thus, @ $x \#=@\langle i, 0\rangle \alpha_{1} z_{1} \beta_{1} \alpha_{2} z_{2} \beta_{2} \ldots \alpha_{n} z_{n} \beta_{n}$ $\langle j, k\rangle \#$ with $\alpha_{l}=\langle i, j\rangle, z_{l}=x_{l}, \beta_{l}=\langle i, j\rangle$, or $\alpha_{l}=\langle i, j-1\rangle, z_{l}=x_{l}, \beta_{l}=\langle i, j\rangle$, for all $l=1,2, \ldots n$. However, @ $x \#$ must be a string over W. Inspect the definition of W to see that $@ x \# \in W^{*}$ if and only if $\alpha_{1}=\langle i, 0\rangle$ and $\beta_{n}\langle i, k\rangle$. Then, β_{1} could be only $\langle i, 0\rangle$ or $\langle i, 1\rangle$. In same way α_{n} could be only $\langle i, k\rangle$ or $\langle i, k-1\rangle$. We can simply show, that we can get only sentential form @ $\langle i, 0\rangle\langle i, 0\rangle x_{1}\langle i, 0\rangle\langle i, 0\rangle x_{2}\langle i, 0\rangle \ldots\langle i, 0\rangle\langle i, 1\rangle x_{m}\langle i, 2\rangle$ $\langle i, 2\rangle\langle i, 3\rangle\langle i, 3\rangle \ldots\langle i, k\rangle\langle i, k\rangle x_{n}\langle i, k\rangle \ldots\langle i, k\rangle x_{n+1}\langle i, k\rangle \ldots\langle i, k\rangle \#$

Claim 13. Let $@ y \# \Rightarrow{ }_{G^{\prime}} x$, where $y=a_{1} a_{2} \ldots a_{n}$ and $\{@, \#\} \cap \operatorname{sub}(x)=\emptyset$ for some $a_{i} \in V, x \in W^{*}, n \geq 0$. Then, $x=\langle i, 0\rangle\langle i, 0\rangle \tau\left(t_{1}\right)\langle i, 0\rangle \ldots\langle i, k\rangle \tau\left(t_{k}\right)\langle i, k\rangle\langle i, k\rangle$, where $t_{i} \in T^{*}$ for all $i=1,2, \ldots, n$.

Proof. Prove this claim by analogy with the proof of Claim 12 .
The following claim shows that Claims 12 and 13 cover all possible ways of rewriting of a string having the form $@ y \#, y \in V^{*}$, in G^{\prime}.
Claim 14. Let $@ y \# \Rightarrow_{G^{\prime}} u, y \in V^{*}$. Then, either $u=@ x \#, x \in W^{*}$, or $u \in W^{*}, \omega(u) \in$ T^{*}, and $\{@, \#\} \cap \operatorname{sub}(u)=\emptyset$.

Proof. Return to the proof of Claim 12. Suppose that @ is rewritten to @ $\langle i, 0\rangle$ and \# is rewritten to ε. Then we can construct only strings of the form $z=@ x\langle i, j\rangle y\langle i, k\rangle$, where $x \in W^{*}, y \in V^{*}$ and last symbol of y is from $V-V^{\prime \prime}$. It is clear, that $z \notin W^{*}$. Analogously, suppose that @ is rewritten to ε and \# is rewritten to $\langle i, k\rangle \#$. As before, such a sentential form is out of W^{*}.

Claim 15. Let $u \Rightarrow_{G^{\prime}} v, u \in W^{*},\{@, \#\} \cap \operatorname{sub}(u)=\emptyset$. Then $v \in T^{*}$.
Proof. From the Claim 14 we see, that $\omega(u) \in T^{*}$. Then, we have to consider only productions with its left sides from \widetilde{T}, because it is the only possibility. Such productions are of the form $\widetilde{t} \rightarrow\langle i, j\rangle t\langle i, j\rangle$ or $\widetilde{t} \rightarrow t$, where $t \in T, 0<i \leq \operatorname{Card}(P), j \geq 1$. Then, string v could have one of the following forms:

1. $u=\langle i, j\rangle t\langle i, j\rangle y, t \in T, 0<i \leq \operatorname{Card}(P), 0 \leq j, y \in\left(V^{\prime \prime} \cup T\right)^{*}$;
2. $u=x\langle i, j\rangle t\langle i, j\rangle y, x \in T^{*}, t \in T, y \in\left(V^{\prime \prime} \cup T\right)^{*}$;
3. $u=t_{1} t_{2} \ldots t_{n}, t_{i} \in T$.

It is easy to see, that only third form is the legal one. The others are out of W.
Claim 16. Every derivation in G^{\prime} is a prefix of

$$
\begin{aligned}
S^{\prime} & \Rightarrow_{G^{\prime}} @ w_{0} \# \\
& \Rightarrow{ }_{G^{\prime}} \\
& \vdots w_{1} \# \\
& \vdots \\
& \Rightarrow{ }_{G^{\prime}} \\
& \Rightarrow_{G^{\prime}} \\
& \Rightarrow_{G^{\prime}} \\
& t
\end{aligned}
$$

where $w_{0}=S, w_{i} \in W^{*}, \omega(u)=\tau(t), t \in T^{*}, 0 \leq i \leq n, n \geq 0$.
Proof. By the proof of Claim 10, S^{\prime} is always rewritten to @ $w_{0} \#$, where $w_{0}=S$. Then, Claim 14 tells us that there are two possible forms of derivations rewriting $\omega\left(@ w_{i} \#\right)$ and, hence, $@ w_{i} \#$. First, G^{\prime} can generate a sequence of n sentential forms that belong to $\{@\} W^{*}\{\#\}$, for some $n \geq 0$ (their form is described in Claim (12). Second, G^{\prime} can rewrite @ $w_{n} \#$ to $u \in W^{*}$, satisfying $\omega(u) \in \widetilde{T}^{*}$ (see Claim 13). By the Claim 15 the only form, to which could be rewritten u is t. Therefore, $u \Rightarrow_{G^{\prime}} t$ such that $t \in T^{*}$ and $\omega(u)=\tau(t)$. After that, no other derivation step can be made from t because P^{\prime} contains no production that rewrites terminals.

Claim 17. For all $x, y \in V^{*}, u \in W^{*}$ it holds

$$
y \Rightarrow_{G} x \text { if and only if @y\# } \Rightarrow_{G^{\prime}} @ u \#
$$

where $x=\omega(u)$.

Proof. Let $b=b_{1} b_{2} \ldots b_{n}, b_{i} \in V$ and $x \in V^{\prime \prime}$, then $\gamma(b, x)=x b_{1} x x b_{2} x \ldots x b_{n} x$.
Only If: Let $y \Rightarrow_{G} x$. Express y and x as $y=a_{1} A_{1} a_{2} A_{2} \ldots a_{n} A_{n} a_{n+1}$ and $x=$ $a_{1} x_{1} a_{2} x_{2} \ldots a_{n} x_{n} x_{n+1}$ and corresponding production from $P: l:\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, which is applied during $y \Rightarrow_{G} x$. Then, for such production exist n corresponding productions in P^{\prime} (see Construction 2h). Then, with use of Claim12, we can construct $@ y \# \Rightarrow{ }_{G^{\prime}} @\langle l, 0\rangle \gamma\left(a_{1},\langle l, 0\rangle\right)\langle l, 0\rangle x_{1}\langle l, 1\rangle \gamma\left(a_{2},\langle l, 1\rangle\right)\langle l, 1\rangle\langle l, 2\rangle \ldots\langle l, n\rangle \gamma\left(x_{n-1}\right.$, $\langle l, n-1\rangle)\langle l, n-1\rangle x_{n}\langle l, n\rangle \gamma\left(x_{n+1},\langle l, n\rangle\right)\langle l, n\rangle \#$, where $\gamma(b, x), a \in V^{*}, x \in V^{\prime \prime}$ is defined as this: Obviously, $\omega(y)=a_{1} x_{1} a_{2} x_{2} \ldots a_{n} x_{n} x_{n+1}=x$.

If: Let @y\# $\Rightarrow_{G^{\prime}} @ u \#$. Express y as $y=a_{1} a_{2} \ldots a_{n}, a_{i} \in V, n \geq 0$. By the proof of Claim 12 we can see, that each a_{i} could be rewritten to $\langle l, m\rangle x_{i}\langle l, m\rangle$ or to $\langle l, m-1\rangle x_{i}$ $\langle l, m\rangle$ (by the proof of Claim 11 we ignore $a_{i} \in V^{\prime \prime}$). In the first case it corresponds to use no rule in G. In the second case there will be (by the proof of the claim) n such cases corresponding to use productions derived from original production $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Then, $y \Rightarrow_{G} x$ such that $x=x_{1} x_{2} \ldots x_{n}=\omega(u)$.

Claim 18. For all $t \in T^{*}, y \in V^{*}, u \in W^{*}$, it hold

$$
y \Rightarrow_{G} t \text { if and only if @y\# } \Rightarrow_{G^{\prime}} u
$$

where $\tau(t)=\omega(u)$.
Proof. By the analogy with the proof of Claim 17.
From the above claims, it is easy to prove that

$$
S \Rightarrow{ }_{G}^{*} t \text { if and only if } S^{\prime} \Rightarrow{ }_{G^{\prime}}^{+} t
$$

for all $t \in T^{*}$.
Only If: Let $S \Rightarrow_{G} v_{1} \Rightarrow_{G} v_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} v_{n} \Rightarrow_{t}$ for some $n \geq 0$. Then, there exists $S^{\prime} \Rightarrow_{G^{\prime}} @ S \# \Rightarrow_{G^{\prime}} @ w_{1} \# \Rightarrow_{G^{\prime}} @ w_{2} \# \Rightarrow_{G^{\prime}} \ldots \Rightarrow_{G^{\prime}} @ w_{n} \# \Rightarrow_{G^{\prime}} u \Rightarrow_{G^{\prime}}$, , where $v_{i}=\omega\left(w_{i}\right)$ for all $i=1, \ldots, n$ and $\tau(t)=\omega(u)$.
If: By Claim 16, $S^{\prime} \Rightarrow_{G^{\prime}}^{+} t$ has the form $S^{\prime} \Rightarrow_{G^{\prime}} @ S \# \Rightarrow_{G^{\prime}} @ w_{1} \# \Rightarrow_{G^{\prime}} @ w_{2} \# \Rightarrow_{G^{\prime}}$ $\ldots \Rightarrow_{G^{\prime}} @ w_{n} \# \Rightarrow_{G^{\prime}} u \Rightarrow_{G^{\prime}} t, n \geq 0$. For this derivation we can construct $S \Rightarrow_{G} v_{1} \Rightarrow_{G}$ $v_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} v_{n} \Rightarrow_{G} t$ so that $v_{i}=\omega\left(w_{i}\right)$ for all $i=1, \ldots, n$.

Therefore, $L(G)=L(G)^{\prime}$, and the theorem holds.

5 Derivation simulations

5.1 Definitions

Now we have to repeat some needed definitions. Definitions as a whole were introduced in [1] and there can be found reasons of their existence and so on. Here we only repeat their readings because they will be used in the following subsections.

Definition 1. A string-relation system is a quadruple $\Psi=\left(W, \Rightarrow, W_{0}, W_{F}\right)$, where W is a language, \Rightarrow is a binary relation on $W, W_{0} \subseteq W$ is a set of start strings, and $W_{F} \subseteq W$ is a set of final strings.

Every string, $w \in W$, represents a 0 -step string-relation sequence in Ψ. For every $n \geq 1$, a sequence $w_{0}, w_{1}, \ldots w_{n}, w_{i} \in W, 0 \leq i \leq n$, is an n-step string-relation sequence, symbolically written as $w_{0} \Rightarrow w_{1} \Rightarrow \ldots \Rightarrow w_{n}$, if for each $0 \leq i \leq n-1, w_{i} \Rightarrow w_{i+1}$.

If there is a string-relation sequence $w_{0} \Rightarrow w_{1} \Rightarrow \ldots \Rightarrow w_{n}$, where $n \geq 0$, we write $w_{0} \Rightarrow^{n} w_{n}$. Furthermore, $w_{0} \Rightarrow^{*} w_{n}$ means that $w_{0} \Rightarrow^{n} w_{n}$ for some $n \geq 0$, and $w_{0} \Rightarrow^{+} w_{n}$ means that $w_{0} \Rightarrow^{n} w_{n}$ for some $n \geq 1$. Obviously, from the mathematical point of view, \Rightarrow^{+}and \Rightarrow^{*} are the transitive closure of \Rightarrow and the transitive and reflexive closure of \Rightarrow, respectively.

Let $\Psi=\left(W, \Rightarrow, W_{0}, W_{F}\right)$ be a string-relation system. A string-relation sequence in $\Psi, u \Rightarrow^{*} v$, where $u, v \in W$, is called a yield sequence, if $u \in W_{0}$. If $u \Rightarrow^{*} v$ is a yield sequence and $v \in W_{F}, u \Rightarrow^{*} v$ is successful.

Let $D(\Psi)$ and $S D(\Psi)$ denote the set of all yield sequences and all successful yield sequences in Ψ, respectively.

Definition 2. Let $\Psi=\left(W, \Rightarrow_{\Psi}, W_{0}, W_{F}\right)$ and $\Omega=\left(W^{\prime}, \Rightarrow_{\Omega}, W_{0}^{\prime}, W_{F}^{\prime}\right)$ be two stringrelation systems, and let σ be a substitution from W^{\prime} to W. Furthermore, let d be a yield sequence in Ψ of the form $w_{0} \Rightarrow_{\Psi} w_{1} \Rightarrow_{\Psi} \ldots \Rightarrow_{\Psi} w_{n-1} \Rightarrow_{\Psi} w_{n}$, where $w_{i} \in W$, $0 \leq i \leq n$, for some $n \geq 0$. A yield sequence, h, in Ω simulates d with respect to σ, symbolically written as $h \triangleright_{\sigma} d$, if h is of the form $y_{0} \Rightarrow_{\Omega}^{m_{1}} y_{1} \Rightarrow_{\Omega}^{m_{2}} \ldots \Rightarrow_{\Omega}^{m_{n-1}} y_{n-1} \Rightarrow_{\Omega}^{m_{n}}$ y_{n}, where $y_{j} \in W^{\prime}, 0 \leq j \leq n, m_{k} \geq 1,1 \leq k \leq n$, and $w_{i} \in \sigma\left(y_{i}\right)$ for all $0 \leq i \leq n$. If, in addition, there exists $m \geq 1$ such that $m_{k} \leq m$ for each $1 \leq k \leq n$, then $h m$-closely simulates d with respect to σ, symbolically written as $h \triangleright_{\sigma}^{m} d$.

Definition 3. Let $\Psi=\left(W, \Rightarrow_{\Psi}, W_{0}, W_{F}\right)$ and $\Omega=\left(W^{\prime}, \Rightarrow_{\Omega}, W_{0}^{\prime}, W_{F}^{\prime}\right)$ be two stringrelation systems, and let σ be a substitution from W^{\prime} to W. Let $X \subseteq D(\Psi)$ and $Y \subseteq D(\Omega)$. Y simulates X with respect to σ, written as $Y \triangleright_{\sigma} X$, if the following two conditions hold:

1. for every $d \in X$, there is $h \in Y$ such that $h \triangleright_{\sigma} d$;
2. for every $h \in Y$, there is $d \in X$ such that $h \triangleright_{\sigma} d$.

Let m be a positive integer. Y m-closely simulates X with respect to $\sigma, Y \triangleright{ }_{\sigma}^{m} X$, provided that:

1. for every $d \in X$, there is $h \in Y$ such that $h \triangleright_{\sigma}^{m} d$;
2. for every $h \in Y$, there is $d \in X$ such that $h \triangleright_{\sigma}^{m} d$.

Definition 4. Let $\Psi=\left(W, \Rightarrow_{\Psi}, W_{0}, W_{F}\right)$ and $\Omega=\left(W^{\prime}, \Rightarrow_{\Omega}, W_{0}^{\prime}, W_{F}^{\prime}\right)$ be two stringrelation systems. If there exists a substitution σ from W^{\prime} to W such that $D(\Omega) \triangleright_{\sigma} D(\Psi)$ and $S D(\Omega) \triangleright_{\sigma} S D(\Psi)$, then Ω is said to be Ψ 's derivation simulator and successfulderivation simulator, respectively. Furthermore, if there is an integer, $m \geq 1$, such that
$D(\Omega) \triangleright_{\sigma}^{m} D(\Psi)$ and $S D(\Omega) \triangleright_{\sigma}^{m} S D(\Psi), \Omega$ is called an m-close derivation simulator and m-close successful-derivation simulator of Ψ, respectively. If there exists a homomorphism ρ from W^{\prime} to W such that $D(\Omega) \triangleright_{\rho} D(\Psi), S D(\Omega) \triangleright_{\rho} S D(\Psi), D(\Omega) \triangleright_{\rho}^{m} D(\Psi)$, and $S D(\Omega) \triangleright_{\rho}^{m} S D(\Psi)$, then Ω is Ψ 's homomorphic derivation simulator, homomorphic successful-derivation simulator, m-close homomorphic derivation simulator and m-close homomorphic successful-derivation simulator, respectively.

5.2 Derivation simulation of Scattered Context Grammars

Definition 5. Let $G=(V, T, P, S)$ be a scattered context grammar. Let \Rightarrow_{G} be the direct derivation relation in G. For \Rightarrow_{G} and every $l \geq 0$, set

$$
\Delta\left(\Rightarrow_{G}, l\right)=\left\{x \Rightarrow_{G} y: x \Rightarrow_{G} y \Rightarrow_{G}^{i} w, x, y \in V^{*}, w \in T^{*}, i+1=l, i \geq 0\right\}
$$

Next, let $G_{1}=\left(V_{1}, T_{1}, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T_{2}, P_{2}, S_{2}\right)$ be scattered context grammars. Let $\Rightarrow_{G_{1}}$ and $\Rightarrow_{G_{2}}$ be the derivation relations of G_{1} and G_{2}, respectively. Let σ be a substitution from V_{2} to $V_{1} . G_{2}$ simulates G_{1} with respect to $\sigma, D\left(G_{2}\right) \triangleright_{D}\left(G_{1}\right)$ in symbols, if there exists two natural numbers $k, l \geq 0$ so that the following conditions hold:

1. $\Psi_{1}=\left(V_{1}^{*}, \Rightarrow_{G_{1}},\left\{S_{1}\right\}, T_{1}^{*}\right)$ and $\Psi_{2}=\left(V_{2}^{*}, \Rightarrow_{\Psi_{2}}, W_{0}, W_{F}\right)$ are string-relation systems corresponding to G_{1} and G_{2}, respectively, where $W_{0}=\left\{x \in V_{2}^{*}: S_{2} \Rightarrow{ }_{G_{2}}^{k} x\right\}$ and $W_{F}=\left\{x \in V_{2}^{*}: x \Rightarrow_{G_{2}}^{l} w, w \in T_{2}^{*}, \sigma(w) \subseteq T_{1}^{*}\right\}$;
2. relation $\Rightarrow_{\Psi_{2}}$ coincides with $\Rightarrow_{G_{2}}-\Delta\left(\Rightarrow_{G_{2}}, l\right)$;
3. $D\left(\Psi_{2}\right) \triangleright_{\sigma} D\left(\Psi_{1}\right)$.

In case that $S D\left(\Psi_{2}\right) \triangleright_{\sigma} S D\left(\Psi_{1}\right)$, G_{2} simulates successful derivations of G_{1} with respect to σ; in symbols, $S D\left(G_{2}\right) \triangleright_{\sigma} S D\left(G_{1}\right)$.

Definition 6. Let G_{1} and G_{2} be scattered context grammars with total alphabets V_{1} and V_{2}, terminal alphabets T_{1} and T_{2}, and axioms S_{1} and S_{2}, respectively. Let σ be a substitution from V_{2} to V_{1}. G_{2} m-closely simulates G_{1} with respect to σ if $D\left(G_{2}\right) \triangleright_{\sigma} D\left(G_{1}\right)$ and there exists $m \geq 1$ such that the corresponding string-relation systems Ψ_{1} and Ψ_{2} satisfy $D\left(\Psi_{2}\right) \triangleright_{\sigma}^{m} D\left(\Psi_{1}\right)$. In symbols, $D\left(G_{2}\right) \triangleright_{\sigma}^{m} D\left(G_{1}\right)$.

Analogously, G_{2} m-closely simulates successful derivations of G_{1} with respect to σ, denoted by $S D\left(G_{2}\right) \triangleright{ }_{\sigma}^{m} S D\left(G_{1}\right)$, if $S D\left(\Psi_{2}\right) \triangleright{ }_{\sigma}^{m} S D\left(\Psi_{1}\right)$ and there exists $m \geq 1$ such that $S D\left(G_{2}\right) \triangleright_{\sigma}^{m} S D\left(G_{1}\right)$.

Definition 7. Let G_{1} and G_{2} be two scattered context grammars. If there exists a substitution σ such that $D\left(G_{2}\right) \triangleright_{\sigma} D\left(G_{1}\right)$, then G_{2} is said to be G_{1} 's derivation simulator.

By analogy with Definition 7, the reader can also define homomorphic, m-close, and successful-derivation simulators of scattered context grammars.

Theorem 3. Let $G=(V, T, P, S)$ be a scattered context grammar and $G^{\prime}=\left(W, T, P^{\prime}, S^{\prime}\right)$ be a symbiotic EOL grammar constructed by using Construction 1 with G as its input. Then, there exists a homomorphism $\widetilde{\omega}$ such that $D\left(G^{\prime}\right) \triangleright \frac{\widetilde{\omega}}{1} D(G)$ and $S D\left(G^{\prime}\right) \triangleright \triangleright_{\widetilde{\omega}}^{1}$ $S D(G)$.

Proof. Let $\Psi=\left(V^{*}, \Rightarrow_{G},\{S\}, T^{*}\right)$ be a string-relation system corresponding to G. Let $\widetilde{\omega}$ be the homomorphism defined in the proof of Theorem1. Let $\Psi^{\prime}=\left(\left(V^{\prime}\right)^{*}, \Rightarrow_{\Psi^{\prime}}, W_{0}, W_{F}\right)$ be a string-relation system corresponding to G^{\prime}, where

$$
\begin{aligned}
\Rightarrow_{\Psi^{\prime}}= & \Rightarrow_{G^{\prime}}-\left\{\langle i, 0\rangle\langle i, 0\rangle \tau\left(t_{1}\right)\langle i, 0\rangle \ldots\langle i, k\rangle \tau\left(t_{n}\right)\langle i, k\rangle\langle i, k\rangle\right\} \Rightarrow_{G^{\prime}} t_{1} t_{2} \ldots t_{n}: \\
& \left.0<i \leq \operatorname{Card}(P), t_{j} \in T^{*}, 1 \leq j \leq n, n \geq 0\right\} \\
W_{0}= & \{@ S \#\} \\
W_{F}= & \left\{\langle i, 0\rangle\langle i, 0\rangle \tau\left(t_{1}\right)\langle i, 0\rangle \ldots\langle i, k\rangle \tau\left(t_{n}\right)\langle i, k\rangle\langle i, k\rangle:\right. \\
& \left.0<i \leq \operatorname{Card}(P), t_{j} \in T^{*}, 1 \leq j \leq n, n \geq 0\right\}
\end{aligned}
$$

It is easy to verify, that Ψ and Ψ^{\prime} satisfy (1) through (3) of Definition 5, of course $S^{\prime} \Rightarrow{ }_{G^{\prime}}^{1} @ S \#$ and for every $u \in W_{F}, u \Rightarrow{ }_{1} G^{\prime} t$, where $t \in T^{*}$ (see Claim 7 in the proof of Theorem 1). Next, we show that $D\left(\Psi^{\prime}\right) \triangleright \frac{1}{\widetilde{\omega}} D(\Psi)$. By Definition 3, we have to establish that

1. for every $d \in D(\Psi)$, there exists $h \in D\left(\Psi^{\prime}\right)$ such that $h \triangleright \frac{1}{\widetilde{\omega}} d$;
2. for every $h \in D\left(\Psi^{\prime}\right)$, there exists $d \in D(\Psi)$ so that $h \triangleright \frac{1}{\tilde{\omega}} d$.
(Note that most of this proof is based on substitutions and claims introduced in the proof of Theorem 1).
(1) Let $d \in D(\Psi)$. Express d as $d=v_{0} \Rightarrow_{G} v_{1} \Rightarrow_{G} v_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} v_{n}, v_{0}=S$, for some $n \geq 0$. For $n=0$, there is $@ S \# \in \Psi^{\prime}$ such that zero-length derivations S and $@ S \#$ satisfy $S \triangleright_{1} \widetilde{\omega} @ S \#$. Assume that $n>0$. Then, according to Claims 2and 8, $v_{i} \Rightarrow_{G} v_{i+1}$ if and only if $@ w_{i} \# \Rightarrow_{G^{\prime}} @ w_{i+1} \#$, where $v_{i+1}=\omega\left(w_{i+1}\right)=\widetilde{\omega}\left(@ w_{i+1} \#\right)$, $w_{i}, w_{i+1} \in$ $W^{*}, 0 \leq i \leq n-1$. Moreover, by the definition of $\Psi^{\prime}, @ w_{i} \# \Rightarrow_{\Psi^{\prime}} @ w_{i+1} \#$ for all $i=0, \ldots, n-1$. Hence, by induction on the length of derivations in G, the reader can easily establish that for every $d \in D(\Psi)$, there exists $h \in D\left(\Psi^{\prime}\right)$ such that $h \triangleright_{\tilde{\omega}}^{1} d$.
(2) Let $h \in D(\Psi)$. By the definition of $\Rightarrow_{\Psi^{\prime}}$ and Claim 7, every yield sequence in Ψ^{\prime} is a prefix of @ $w_{0} \# \Rightarrow_{\Psi^{\prime}} @ w_{1} \# \Rightarrow_{\Psi^{\prime}} \ldots \Rightarrow_{\Psi^{\prime}} @ w_{n} \# \Rightarrow_{\Psi^{\prime}} u$, where $w_{0}=s, w_{i} \in W^{*}$, $u \in W_{F}, 0 \leq i \leq n, n \leq 0$. The zero-length derivation @ $s \#$ is a 1-close simulation of s from G. Claims 2 and 8 imply that for every @ $w_{i} \# \Rightarrow_{\Psi^{\prime}} @ w_{i+1} \#$, there exists $v_{i} \Rightarrow_{G} v_{i+1}$ for some $v_{i}, v_{i+1} \in V^{*}, v_{i+1}=\omega\left(w_{i+1}\right)=\widetilde{\omega}\left(@ w_{i+1} \#\right), 0 \leq i \leq n-1$. Furthermore, according to Claims 4and 9, for @ $w_{n} \# \Rightarrow_{\Psi^{\prime}} u$, there exists $v_{n} \Rightarrow_{G} t$ such that $t \in T^{*}, \tau(t)=\omega(u)$; that is, $\widetilde{\omega}(u)=t$. Clearly, every derivation step in h is a simulation of a corresponding derivation step in d; as a result, $h \triangleright \frac{\widetilde{\omega}}{1} d$.

Next, we prove that $S D\left(G^{\prime}\right) \triangleright \frac{1}{\widetilde{\omega}} S D(G)$. From (2), it follows that every successful yield sequence $h \in S D\left(\Psi^{\prime}\right)$ is a 1-close simulation of a derivation $s \Rightarrow_{G}^{*} t$ with $t \in T^{*}$. To prove that for every $d \in S D(\Psi)$, there exists $h \in S D\left(\Psi^{\prime}\right)$ such that $h \triangleright \frac{1}{\widetilde{\omega}} d$, return
to case (1) in this proof. Assume that $v_{0} \Rightarrow_{G}^{n} v_{n}, v_{n} \in T^{*}, n \geq 1$. Then, there exists a derivation @ $w_{n-1} \# \Rightarrow_{\Psi^{\prime}} u, u \in W_{F}$ (see Claim 9), such that $\tau\left(v_{n}\right)=\omega(u)$ which implies $\widetilde{\omega}(u)=v_{n}$. Therefore, we get $h \triangleright \frac{1}{\widetilde{\omega}} d$, so $S D\left(G^{\prime}\right) \triangleright \frac{1}{\widetilde{\omega}} S D(G)$.

Theorems 1 and 3 show that for every scattered context grammar $G=(V, T, P, S)$, there exists a symbiotic E0L grammar $G^{\prime}=\left(W^{\prime}, T, P^{\prime}, S^{\prime}\right)$ such that

1. $L(G)=L\left(G^{\prime}\right)$;
2. G^{\prime} is a 1 -close homomorphic derivation simulator of G^{\prime};
3. G^{\prime} is a 1-close homomorphic successful-derivation simulator of G;
4. To simulate G, G^{\prime} uses one initial derivation step ($S^{\prime} \Rightarrow_{G^{\prime}} @ S \#$) and one derivation step that removes auxiliary symbols $\left(\langle i, 0\rangle\langle i, 0\rangle \tau\left(t_{1}\right)\langle i, 0\rangle \ldots\langle i, k\rangle \tau\left(t_{n}\right)\langle i, k\rangle\right.$ $\left.\langle i, k\rangle \Rightarrow{ }_{G^{\prime}} t_{1} t_{2} \ldots t_{n}: 0<i \leq \operatorname{Card}(P), t_{j} \in T^{*}, 1 \leq j \leq n, n \geq 0\right)$.

5.3 Derivation simulation of Phrase-Structured Grammars

Definition 8. Let $G=(V, T, P, S)$ be a phrase-structured grammar. Let \Rightarrow_{G} be the direct derivation relation in G. For \Rightarrow_{G} and every $l \geq 0$, set

$$
\Delta\left(\Rightarrow_{G}, l\right)=\left\{x \Rightarrow_{G} y: x \Rightarrow_{G} y \Rightarrow_{G}^{i} w, x, y \in V^{*}, w \in T^{*}, i+1=l, i \geq 0\right\} .
$$

Next, let $G_{1}=\left(V_{1}, T_{1}, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T_{2}, P_{2}, S_{2}\right)$ be phrase-structured grammars. Let $\Rightarrow_{G_{1}}$ and $\Rightarrow_{G_{2}}$ be the derivation relations of G_{1} and G_{2}, respectively. Let σ be a substitution from V_{2} to V_{1}. G_{2} simulates G_{1} with respect to $\sigma, D\left(G_{2}\right) \triangleright_{D}\left(G_{1}\right)$ in symbols, if there exists two natural numbers $k, l \geq 0$ so that the following conditions hold:

1. $\Psi_{1}=\left(V_{1}^{*}, \Rightarrow_{G_{1}},\left\{S_{1}\right\}, T_{1}^{*}\right)$ and $\Psi_{2}=\left(V_{2}^{*}, \Rightarrow_{\Psi_{2}}, W_{0}, W_{F}\right)$ are string-relation systems corresponding to G_{1} and G_{2}, respectively, where $W_{0}=\left\{x \in V_{2}^{*}: S_{2} \Rightarrow_{G_{2}}^{k} x\right\}$ and $W_{F}=\left\{x \in V_{2}^{*}: x \Rightarrow_{G_{2}}^{l} w, w \in T_{2}^{*}, \sigma(w) \subseteq T_{1}^{*}\right\}$;
2. relation $\Rightarrow_{\Psi_{2}}$ coincides with $\Rightarrow_{G_{2}}-\Delta\left(\Rightarrow_{G_{2}}, l\right)$;
3. $D\left(\Psi_{2}\right) \triangleright_{\sigma} D\left(\Psi_{1}\right)$.

In case that $S D\left(\Psi_{2}\right) \triangleright_{\sigma} S D\left(\Psi_{1}\right), G_{2}$ simulates successful derivations of G_{1} with respect to σ; in symbols, $S D\left(G_{2}\right) \triangleright_{\sigma} S D\left(G_{1}\right)$.

Definition 9. Let G_{1} and G_{2} be phrase-structured grammars with total alphabets V_{1} and V_{2}, terminal alphabets T_{1} and T_{2}, and axioms S_{1} and S_{2}, respectively. Let σ be a substitution from V_{2} to $V_{1} . G_{2} m$-closely simulates G_{1} with respect to σ if $D\left(G_{2}\right) \triangleright_{\sigma} D\left(G_{1}\right)$ and there exists $m \geq 1$ such that the corresponding string-relation systems Ψ_{1} and Ψ_{2} satisfy $D\left(\Psi_{2}\right) \triangleright_{\sigma}^{m} D\left(\Psi_{1}\right)$. In symbols, $D\left(G_{2}\right) \triangleright_{\sigma}^{m} D\left(G_{1}\right)$.

Analogously, G_{2} m-closely simulates successful derivations of G_{1} with respect to σ, denoted by $S D\left(G_{2}\right) \triangleright_{\sigma}^{m} S D\left(G_{1}\right)$, if $S D\left(\Psi_{2}\right) \triangleright_{\sigma}^{m} S D\left(\Psi_{1}\right)$ and there exists $m \geq 1$ such that $S D\left(G_{2}\right) \triangleright_{\sigma}^{m} S D\left(G_{1}\right)$.

Definition 10. Let G_{1} and G_{2} be two phrase-structured grammars. If there exists a substitution σ such that $D\left(G_{2}\right) \triangleright_{\sigma} D\left(G_{1}\right)$, then G_{2} is said to be G_{1} 's derivation simulator.

By analogy with Definition 7, the reader can also define homomorphic, m-close, and successful-derivation simulators of phrase-structured grammars.

Theorem 4. Let $G=(V, T, P, S)$ be a phrase-structured grammar, $G^{\prime}=\left(W, T, P^{\prime}, S^{\prime}\right)$ be a symbiotic E0L grammar constructed by using Construction 2 with G as its input. Then, there exists a homomorphism $\widetilde{\omega}$ such that $D\left(G^{\prime}\right) \triangleright \frac{1}{\widetilde{\omega}} D(G)$ and $S D\left(G^{\prime}\right) \triangleright \frac{1}{\widetilde{\omega}} S D(G)$.

Proof. Let $\Psi=\left(V^{*}, \Rightarrow_{G},\{S\}, T^{*}\right)$ be a string-relation system corresponding to G. Let $\widetilde{\omega}$ be the homomorphism defined in the proof of Theorem 2 , Let $\Psi^{\prime}=\left(\left(V^{\prime}\right)^{*}, \Rightarrow_{\Psi^{\prime}}, W_{0}, W_{F}\right)$ be a string-relation system corresponding to G^{\prime}, where

$$
\begin{aligned}
\Rightarrow_{\Psi^{\prime}}= & \Rightarrow_{G^{\prime}}-\left\{\langle i, 0\rangle\langle i, 0\rangle \tau\left(t_{1}\right)\langle i, 0\rangle \ldots\langle i, k\rangle \tau\left(t_{n}\right)\langle i, k\rangle\langle i, k\rangle\right\} \Rightarrow_{G^{\prime}} t_{1} t_{2} \ldots t_{n}: \\
& \left.0<i \leq \operatorname{Card}(P), t_{j} \in T^{*}, 1 \leq j \leq n, n \geq 0\right\} \\
W_{0}= & \{@ S \#\} \\
W_{F}= & \left\{\langle i, 0\rangle\langle i, 0\rangle \tau\left(t_{1}\right)\langle i, 0\rangle \ldots\langle i, k\rangle \tau\left(t_{n}\right)\langle i, k\rangle\langle i, k\rangle:\right. \\
& \left.0<i \leq \operatorname{Card}(P), t_{j} \in T^{*}, 1 \leq j \leq n, n \geq 0\right\}
\end{aligned}
$$

It is easy to verify, that Ψ and Ψ^{\prime} satisfy (1) through (3) of Definition 8 , of course $S^{\prime} \Rightarrow{ }_{G^{\prime}}^{1} @ S \#$ and for every $u \in W_{F}, u \Rightarrow_{1} G^{\prime} t$, where $t \in T^{*}$ (see Claim 16 in the proof of Theorem 22). Next, we show that $D\left(\Psi^{\prime}\right) \triangleright{\underset{\widetilde{\omega}}{ }}_{1} D(\Psi)$. By Definition 3, we have to establish that

1. for every $d \in D(\Psi)$, there exists $h \in D\left(\Psi^{\prime}\right)$ such that $h \triangleright \frac{1}{\widetilde{\omega}} d$;
2. for every $h \in D\left(\Psi^{\prime}\right)$, there exists $d \in D(\Psi)$ so that $h \triangleright \frac{1}{\widetilde{\omega}} d$.
(Note that most of this proof is based on substitutions and claims introduced in the proof of Theorem 2).
(1) Let $d \in D(\Psi)$. Express d as $d=v_{0} \Rightarrow_{G} v_{1} \Rightarrow_{G} v_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} v_{n}, v_{0}=S$, for some $n \geq 0$. For $n=0$, there is $@ S \# \in \Psi^{\prime}$ such that zero-length derivations S and $@ S \#$ satisfy $S \triangleright_{1} \widetilde{\omega} @ S \#$. Assume that $n>0$. Then, according to Claims 11 and $17, v_{i} \Rightarrow_{G}$ v_{i+1} if and only if $@ w_{i} \# \Rightarrow_{G^{\prime}} @ w_{i+1} \#$, where $v_{i+1}=\omega\left(w_{i+1}\right)=\widetilde{\omega}\left(@ w_{i+1} \#\right), w_{i}, w_{i+1} \in$ $W^{*}, 0 \leq i \leq n-1$. Moreover, by the definition of $\Psi^{\prime}, @ w_{i} \# \Rightarrow_{\Psi^{\prime}} @ w_{i+1} \#$ for all $i=0, \ldots, n-1$. Hence, by induction on the length of derivations in G, the reader can easily establish that for every $d \in D(\Psi)$, there exists $h \in D\left(\Psi^{\prime}\right)$ such that $h \triangleright \frac{1}{\widetilde{\omega}} d$.
(2) Let $h \in D(\Psi)$. By the definition of $\Rightarrow_{\Psi^{\prime}}$ and Claim 16, every yield sequence in Ψ^{\prime} is a prefix of $@ w_{0} \# \Rightarrow_{\Psi^{\prime}} @ w_{1} \# \Rightarrow_{\Psi^{\prime}} \ldots \Rightarrow_{\Psi^{\prime}} @ w_{n} \# \Rightarrow_{\Psi^{\prime}} u$, where $w_{0}=s, w_{i} \in W^{*}$, $u \in W_{F}, 0 \leq i \leq n, n \leq 0$. The zero-length derivation @ $s \#$ is a 1-close simulation of s from G. Claims 11 and 17 imply that for every @ $w_{i} \# \Rightarrow_{\Psi^{\prime}} @ w_{i+1} \#$, there exists $v_{i} \Rightarrow_{G} v_{i+1}$ for some $v_{i}, v_{i+1} \in V^{*}, v_{i+1}=\omega\left(w_{i+1}\right)=\widetilde{\omega}\left(@ w_{i+1} \#\right), 0 \leq i \leq n-1$.

Furthermore, according to Claims 13 and 18, for @ $w_{n} \# \Rightarrow_{\Psi^{\prime}} u$, there exists $v_{n} \Rightarrow_{G} t$ such that $t \in T^{*}, \tau(t)=\omega(u)$; that is, $\widetilde{\omega}(u)=t$. Clearly, every derivation step in h is a simulation of a corresponding derivation step in d; as a result, $h \triangleright \frac{1}{\widetilde{\omega}} d$.

Next, we prove that $S D\left(G^{\prime}\right) \triangleright \frac{1}{\widetilde{\omega}} S D(G)$. From (2), it follows that every successful yield sequence $h \in S D\left(\Psi^{\prime}\right)$ is a 1-close simulation of a derivation $s \Rightarrow_{G}^{*} t$ with $t \in T^{*}$. To prove that for every $d \in S D(\Psi)$, there exists $h \in S D\left(\Psi^{\prime}\right)$ such that $h \triangleright \frac{1}{\widetilde{\omega}} d$, return to case (1) in this proof. Assume that $v_{0} \Rightarrow_{G}^{n} v_{n}, v_{n} \in T^{*}, n \geq 1$. Then, there exists a derivation $@ w_{n-1} \# \Rightarrow{ }_{\Psi^{\prime}} u, u \in W_{F}$ (see Claim 18), such that $\tau\left(v_{n}\right)=\omega(u)$ which implies $\widetilde{\omega}(u)=v_{n}$. Therefore, we get $h \triangleright \frac{\widetilde{\omega}}{1} d$, so $S D\left(G^{\prime}\right) \triangleright \frac{\widetilde{\omega}}{1} S D(G)$.

Theorems 2 and 4 show that for every phrase-structured grammar $G=(V, T, P, S)$, there exists a symbiotic E0L grammar $G^{\prime}=\left(W^{\prime}, T, P^{\prime}, S^{\prime}\right)$ such that

1. $L(G)=L\left(G^{\prime}\right)$;
2. G^{\prime} is a 1-close homomorphic derivation simulator of G^{\prime};
3. G^{\prime} is a 1-close homomorphic successful-derivation simulator of G;
4. To simulate G, G^{\prime} uses one initial derivation step $\left(S^{\prime} \Rightarrow_{G^{\prime}} @ S \#\right)$ and one derivation step that removes auxiliary symbols $\left(\langle i, 0\rangle\langle i, 0\rangle \tau\left(t_{1}\right)\langle i, 0\rangle \ldots\langle i, k\rangle \tau\left(t_{n}\right)\langle i, k\rangle\right.$ $\left.\langle i, k\rangle \Rightarrow{ }_{G^{\prime}} t_{1} t_{2} \ldots t_{n}: 0<i \leq \operatorname{Card}(P), t_{j} \in T^{*}, 1 \leq j \leq n, n \geq 0\right)$.

6 Conclusion

In this paper we have gained following results:

1. Every scattered context grammar G can be simulated by a symbiotic E0L grammar G^{\prime}, while these claims hold:
a) $L(G)=L\left(G^{\prime}\right)$;
b) G^{\prime} is a 1 -close homomorphic derivation simulator of G;
c) G^{\prime} is a 1-close homomorphic successful-derivation simulator of G;
2. Every phrase-structured grammar G can be simulated by a symbiotic E0L grammar G^{\prime}, while these claims hold:
a) $L(G)=L\left(G^{\prime}\right)$;
b) G^{\prime} is a 1-close homomorphic derivation simulator of G;
c) G^{\prime} is a 1-close homomorphic successful-derivation simulator of G;

References

[1] A. Meduna and M. Švec, A Formalization of Derivation Similarity in the Formal Language Theory and its Illustration in Terms of Lindenmayer systems, Fundamenta Informaticae 20 (2004)
[2] H. Hamburger and D. Richards, Logic and Language Models for Computer Science, Prentice Hall, London, 2002.
[3] A. Meduna, Symbiotic E0L Systems, Acta Cybernetica 10 (1992), 165-172.
[4] A. Meduna, Automata and Languages: Theory and Applications, Springer, London, 2000.
[5] A. Meduna and M. Švec, Forbidding ET0L grammars, Theoretical Computer Science 306 (2003), 449-469.
[6] A. Parkes, Introduction to Languages, Machines, and Logic: Computable Languages, Abstract Machines, and Formal Logic, Springer, London, 2002.
[7] G. Rozenberg and A. Salomaa, The Mathematical Theory of L-Systems, Academic Press, New York, 1980.
[8] G. Rozenberg and A. Salomaa. (editors), The Book of L, Springer, Berlin, 1986.

