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Abstract: This paper contains more examples to formerly introduced
concept of formal language equivalency. That is, for two models, there is a
substitution by which we change each string of every yield sequence in one
model so that sequence ofs string resulting from this change represents a yield
sequence in the other equvalent model, these two models closely simulates
each other; otherwise they do not. In this paper are shown two cases of such
simulations.
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1 Introduction

In the [1] was introduced quite new method of compraing two grammatical systems.
Before this paper there was almost vague comparations of grammars limited by similarity
of generated languages. This new approach comes with comparing not only generated
languages but also similarity of generating process.

Because we have many different transformations from one type of grammar to another
in the theory of formal languages, we sometimes want to describe similarity of such
converted grammars. On the second hand, we need to examine this similarity in the
practice. For example we try to find some usable representation of some grammar for
use in a compiling system. We can do some transformations but we still want to achieve
same result in new grammar with almost same number of derivation steps and so on.

So, the concepts of m-close simulation and some others were introduced in [1].
In the section 2 are recalled some well-known notions of the formal language theory.

Section 3 introduces new conversion from scattered context grammars to symbiotic E0L
grammrs. Similar conversion from phrase-structured grammars is described in Section 4.
Next section deals with description of derivation simulations from previous two sections.
Here are repeated some needed definitions of concepts of derivation similarity and proved
two theorems about previous conversions. Section 6 includes proved results as a whole.

2 Preliminaries

This paper assumes that the reader is familiar with the language theory (see [2], [4], [6]).
Let V be an alphabet. V ∗ denotes the free monoid generated by V under the op-

eration of concatenation. Let ε be the unit of V ∗ and V + = V ∗ − {ε}. Given a word,
w ∈ V ∗, |w| represents the length of w and alph(w) denotes the set of all symbols oc-
curing in w. Moreover, sub(w) denotes the set of all subwords of w. Let R be a binary
relation on a set W . Instead of u ∈ R(v), where u, v ∈ W , we write vRu in this paper.

A scattered context grammar is an ordered quadruple G = (V, T, P, S), where V ,
T , and S are the total alphabet of G, the set of terminals T ⊆ V , and the axiom
S ∈ V − T , respectively. P is a finite set of productions of the form (A1, . . . , An) →
(x1, . . . , xn), for some n ≥ 1, where Ai ∈ V − T and xi ∈ V ∗ form 1 ≤ i ≤ n. If p ∈
P is of the form (A1, A2, . . . , An) → (x1, x2, . . . , xn), u = u1A1u2A2 . . . unAnun+1, v =
u1x1u2x2 . . . unxnun+1, where ui ∈ V ∗, for i = 1, 2, . . . , n, then u directly derives v in
G according to p, denoted by u ⇒G v[p] or, simply u ⇒ v. In a standard manner, we
extend ⇒G to ⇒n

G, where n ≥ 0, and based on ⇒n
G, we define ⇒∗

G, which is transitive
and reflexive closure of ⇒. Let S ⇒∗

G x is called a successful derivation. The language
of G, L(G), is defined as L(G) = {x : S ⇒∗

G x, x ∈ T ∗}. For any p ∈ P of the form
(A1, A2, . . . , An) → (x1, x2, . . . , xn), left(p) means string A1A2 . . . An and right(p) string
x1x2 . . . xn.

A phrase-structured grammar is and ordered quadruple G = (V, T, P, S), where V, T ,
and S are the total alphabet of G, the set of terminals T ⊆ V , and the axiom S ∈ V −T ,
respectively. P is a finite set of productions of the form x → y, where x ∈ V + and
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y ∈ V ∗. If p ∈ P is of the form x → y, u = u1xu2, v = u1yu2, where u, v ∈ V ∗, then
u directly derives v in G according to p, denoted by u ⇒G v[p] or, simply u ⇒ v. In
a standard manner, we extend ⇒G to ⇒n

G, where n ≥ 0, and based on ⇒n
G, we define

⇒∗
G, which is transitive and reflexive closure of ⇒. Let S ⇒∗

G x is called a successful
derivation. The language of G, L(G), is defined as L(G) = {x : S ⇒∗

G x, x ∈ T ∗}. For
any p ∈ P of the form x → y, left(p) means string x and right(p) string y.

A symbiotic E0L grammar (see [3]) is a quadruple G = (W,T, P, S), where W , T ,
and S are the set of generators W ⊆ (V ∪V 2), the set of terminals T ⊆ V , and the axiom
S ∈ V − T , respectively. P is a finite set of productions of the form A → x, A ∈ V ,
x ∈ V ∗. The direct derivation relation is defined in the following way: let x, y ∈ W ∗

such that x = a1a2 . . . an, ai ∈ V , y = y1y2 . . . yn, yi ∈ V ∗, and productions ai → yi ∈ P
for all i = 1, . . . , n. Then, x directly derives y, x ⇒G y in symbols. The language of G
is L(G) = {w ∈ T ∗ : S ⇒∗

G w}.

3 Simulation of Scattered Context Grammars

Construction 1.

Input : A scattered context grammar, G = (V, T, P, S)

Output : A symbiotic E0L grammars, G′

Algorithm: At first, we introduce a new alphabet, V ′ = V ∪ {@,#, S′} ∪ V ′′ ∪ T̃ , T̃ =
{ã : a ∈ T} , V ′′ = {〈i, j〉 : 0 < i ≤ Card(P ), 0 ≤ j ≤ k}. Let τ be a homomorphism from
T to T̃ such that τ(a) = ã for all a ∈ T . Define a language W , over V ′ as W = V ∪
{@,#, S′}∪ T̃ ∪{〈i, j〉 〈i, j〉 : 0 < i ≤ Card(P ), 0 ≤ j ≤ k}. Then, construct a symbiotic
E0L grammar G′ = (W,T, P ′, S′), where the set of productions is defined in the following
way:

1. add S′ → @S# to P ′;

2. for every production n: (A1, A2, . . . , Ak) → (x1, x2, . . . , xk) ∈ P add these rules to
P ′ (where n is a label, 0 <≤ Card(P ):

A1 → 〈n, 0〉 τ(x1) 〈n, 1〉
A2 → 〈n, 1〉 τ(x2) 〈n, 2〉

...
Ak → 〈n, k − 1〉 τ(xk) 〈n, k〉

3. add @ → @ 〈i, 0〉 , 0 < i ≤ Card(P ) to P ′;

4. add # → 〈i, k〉#, to P ′ for each production i: (A1, A2, . . . , Ak) → (x1, x2, . . . , xk) ∈
P ;

5. add @ → ε;

6. add # → ε;
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7. for each A ∈ V ∪ T̃ add productions of this form to P ′: A → 〈i, j〉A 〈i, j〉 , 0 < i ≤
Card(P ), 0 ≤ j ≤ k;

8. add these productions to P ′: 〈i, j〉 → ε, 0 < i ≤ Card(P ), 0 ≤ j ≤ k;

9. add production ã → a for each a ∈ T to P ′.

Theorem 1. Let G = (V, T, P, S) be a scattered context grammar. Let G′ be a symbiotic
E0L grammar constructed by Construction 1 with G as its input. Then, L(G) = L(G′).

Proof. Let ω be a homomorphism from V ′ to V ′−V ′′ defined as ω(a) = ε for all a ∈ V ′′,
and ω(a) = a, for all a ∈ V ′ − V ′′.

Claim 1. For every w ∈ W ∗ holds,

1. S′ ⇒+
G w if and only if @S# ⇒∗

G w;

2. S′ ⇒+
G w implies S′ 6∈ sub(w).

Proof. By the definition of P ′, it is easy to see that the very first derivation step always
rewrites S′ to @S#. Moreover, no productions generate S′; thus, S′ appears in no
sentential form derived from S′.

Claim 2. For all u, v ∈ W+, S′ 6∈ sub(uv), u ⇒G′ v if and only if ω(u) ⇒G′ v.

Proof. Examine the definition of P ′. Clearly, all occurrences of symbols from V ′′ are
always erased during u ⇒G′ v, so they play no role in the generation of v. By the
definition of W and ω, ω(u) ∈ W ∗; therefore ω(u) ⇒G′ is a valid derivation in G′.

Note that this property of derivations in G′ allows us to ignore symbols of the form
〈i, j〉 occuring in left-hand sides of derivation steps.

Claim 3. Let @y# ⇒G′ @x#, where y = a1a2 . . . an for some ai ∈ V, x ∈ W ∗, n ≥ 0.
Then, @x# = @ 〈i, 0〉 〈i, 0〉x1 〈i, 1〉 〈i, 1〉 . . . 〈i, 1〉 〈i, 1〉xm 〈i, 2〉 〈i, 2〉xm+1 〈i, 2〉 〈i, 2〉 . . .
〈i, k − 1〉xn 〈i, k〉 〈i, k〉xn+1 〈i, k〉 . . . xm 〈i, k〉 〈i, k〉#, where xj ∈ V ∗ for all j = 1, 2, . . . ,
m and some i.

Proof. Since x is surrounded by @ and # in @x#, G′ surely rewrites @x# in such way,
that @ is rewritten to some @ 〈i, 0〉 and # to 〈j, k〉 , 0 ≤ i, j ≤ Card(P ). Every Al can be
rewritten either to 〈i, j〉xl 〈i, j〉 or (if such production exists) to 〈i, j − 1〉xl 〈i, j〉, where
0 < i ≤ Card(P ), 0 ≤ j ≤ k, xi ∈ V ∗. Thus, @x# = @ 〈i, 0〉α1z1β1α2z2β2 . . . αnznβn

〈j, k〉# with αl = 〈i, j〉 , zl = xl, βl = 〈i, j〉, or αl = 〈i, j − 1〉 , zl = xl, βl = 〈i, j〉, for all
l = 1, 2, . . . n. However, @x# must be a string over W . Inspect the definition of W to
see that @x# ∈ W ∗ if and only if α1 = 〈i, 0〉 and βn 〈i, k〉. Then, β1 could be only 〈i, 0〉
or 〈i, 1〉. In same way αn could be only 〈i, k〉 or 〈i, k − 1〉. We can simply show, that
we can get only sentential form @x# = @ 〈i, 0〉 〈i, 0〉x1 〈i, 1〉 〈i, 1〉 . . . 〈i, 1〉 〈i, 1〉xm 〈i, 2〉
〈i, 2〉xm+1 〈i, 2〉 〈i, 2〉 . . . 〈i, k − 1〉xn 〈i, k〉 〈i, k〉xn+1 〈i, k〉 . . . xm 〈i, k〉 〈i, k〉#.
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Claim 4. Let @y# ⇒G′ x, where y = a1a2 . . . an and {@,#} ∩ sub(x) = ∅ for some
ai ∈ V, x ∈ W ∗, n ≥ 0. Then, x = 〈i, 0〉 〈i, 0〉 τ(t1) 〈i, 0〉 . . . 〈i, k〉 τ(tn) 〈i, k〉 〈i, k〉, where
ti ∈ T ∗ for all i = 1, 2, . . . , n.

Proof. Prove this claim by analogy with the proof of Claim 3.

The following claim shows that Claims 3 and 4 cover all possible ways of rewriting
of a string having the form @y#, y ∈ V ∗, in G′.

Claim 5. Let @y# ⇒G′ u, y ∈ V ∗. Then, either u = @x#, x ∈ W ∗, or u ∈ W ∗, ω(u) ∈
T ∗, and {@,#} ∩ sub(u) = ∅.

Proof. Return to the proof of Claim 3. Suppose that @ is rewritten to @ 〈i, 0〉 and #
is rewritten to ε. Then we can construct only strings of the form z = @x 〈i, j〉 y 〈i, k〉,
where x ∈ W ∗, y ∈ V ∗ and last symbol of y is from V − V ′′. It is clear, that z 6∈ W ∗.
Analogously, suppose that @ is rewritten to ε and # is rewritten to 〈i, k〉#. As before,
such a sentential form is out of W ∗.

Claim 6. Let u ⇒G′ v, u ∈ W ∗, {@,#} ∩ sub(u) = ∅. Then v ∈ T ∗.

Proof. From the Claim 5 we see, that ω(u) ∈ T ∗. Then, we have to consider only
productions with its left sides from T̃ , because it is the only possibility. Such productions
are of the form t̃ → 〈i, j〉 t 〈i, j〉 or t̃ → t, where t ∈ T, 0 < i ≤ Card(P ), j ≥ 1. Then,
string v could have one of the following forms:

1. u = 〈i, j〉 t 〈i, j〉 y, t ∈ T, 0 < i ≤ Card(P ), 0 ≤ j, y ∈ (V ′′ ∪ T )∗;

2. u = x 〈i, j〉 t 〈i, j〉 y, x ∈ T ∗, t ∈ T, y ∈ (V ′′ ∪ T )∗;

3. u = t1t2 . . . tn, ti ∈ T .

It is easy to see, that only third form is the legal one. The others are out of W .

Claim 7. Every derivation in G′ is a prefix of

S′ ⇒G′ @w0#
⇒G′ @w1#

...
⇒G′ @wn#
⇒G′ u
⇒G′ t

where w0 = S, wi ∈ W ∗, ω(u) = τ(t), t ∈ T ∗, 0 ≤ i ≤ n, n ≥ 0.
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Proof. By the proof of Claim 1, S′ is always rewritten to @w0#, where w0 = S. Then,
Claim 5 tells us that there are two possible forms of derivations rewriting ω(@wi#)
and, hence, @wi#. First, G′ can generate a sequence of n sentential forms that belong
to {@}W ∗{#}, for some n ≥ 0 (their form is described in Claim 3). Second, G′ can
rewrite @wn# to u ∈ W ∗, satisfying ω(u) ∈ T̃ ∗ (see Claim 4). By the Claim 6 the
only form, to which could be rewritten u is t. Therefore, u ⇒G′ t such that t ∈ T ∗

and ω(u) = τ(t). After that, no other derivation step can be made from t because P ′

contains no production that rewrites terminals.

Claim 8. For all x, y ∈ V ∗, u ∈ W ∗ it holds

y ⇒G x if and only if @y# ⇒G′ @u#

where x = ω(u).

Proof. Let b = b1b2 . . . bn, bi ∈ V and x ∈ V ′′, then γ(b, x) = xb1xxb2x . . . xbnx.

Only If : Let y ⇒G x. Express y and x as y = a1A1a2A2 . . . anAnan+1 and x =
a1x1a2x2 . . . anxnxn+1 and corresponding production from P : l: (A1, A2, . . . , An) →
(x1, x2, . . . , xn), which is applied during y ⇒G x. Then, for such production exist n corre-
sponding productions in P ′ (see Construction 1). Then, with use of Claim 3, we can con-
struct @y# ⇒G′ @ 〈l, 0〉 γ(a1, 〈l, 0〉) 〈l, 0〉x1 〈l, 1〉 γ(a2, 〈l, 1〉) 〈l, 1〉 〈l, 2〉 . . . 〈l, n〉 γ(xn−1,
〈l, n− 1〉) 〈l, n− 1〉xn 〈l, n〉 γ(xn+1, 〈l, n〉) 〈l, n〉#, where γ(b, x), a ∈ V ∗, x ∈ V ′′ is de-
fined as this: Obviously, ω(y) = a1x1a2x2 . . . anxnxn+1 = x.

If : Let @y# ⇒G′ @u#. Express y as y = a1a2 . . . an, ai ∈ V, n ≥ 0. By the proof of
Claim 3 we can see, that each ai could be rewritten to 〈l, m〉xi 〈l, m〉 or to 〈l,m− 1〉xi

〈l, m〉 (by the proof of Claim 2 we ignore ai ∈ V ′′). In the first case it corresponds to use
no rule in G. In the second case there will be (by the proof of the claim) n such cases
corresponding to use productions derived from original production (A1, A2, . . . , An) →
(y1, y2, . . . , yn). Then, y ⇒G x such that x = x1x2 . . . xn = ω(u).

Claim 9. For all t ∈ T ∗, y ∈ V ∗, u ∈ W ∗, it hold

y ⇒G t if and only if @y# ⇒G′ u

where τ(t) = ω(u).

Proof. By the analogy with the proof of Claim 8.

From the above claims, it is easy to prove that

S ⇒∗
G t if and only if S′ ⇒+

G′ t

for all t ∈ T ∗.

Only If : Let S ⇒G v1 ⇒G v2 ⇒G . . . ⇒G vn ⇒t for some n ≥ 0. Then, there
exists S′ ⇒G′ @S# ⇒G′ @w1# ⇒G′ @w2# ⇒G′ . . . ⇒G′ @wn# ⇒G′ u ⇒G′ t, where
vi = ω(wi) for all i = 1, . . . , n and τ(t) = ω(u).
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If : By Claim 7, S′ ⇒+
G′ t has the form S′ ⇒G′ @S# ⇒G′ @w1# ⇒G′ @w2# ⇒G′

. . . ⇒G′ @wn# ⇒G′ u ⇒G′ t, n ≥ 0. For this derivation we can construct S ⇒G v1 ⇒G

v2 ⇒G . . . ⇒G vn ⇒G t so that vi = ω(wi) for all i = 1, . . . , n.
Therefore, L(G) = L(G)′, and the theorem holds. �

4 Simulation of Phrase-Structured Grammars

Construction 2.

Input : A phrase-structured grammar, G = (V, T, P, S)

Output : A symbiotic E0L grammars, G′

Algorithm: Introduce a new alphabet, V ′ = V ∪ {@,#, @̃, #̃, S′} ∪ V ′′ ∪ T̃ , V ′′ =
{〈i, j〉 : 0 < i ≤ Card(P ), 0 ≤ j ≤ k} , T̃ = {ã : a ∈ T}. Let τ be a homomorphism from
T to T̃ such that τ(a) = ã for all a ∈ T . Define a language W , over V ′ as W =
V ∪ {@,#, @̃, #̃, S′} ∪ T̃ ∪ {〈i, j〉 〈i, j〉 : 0 < i ≤ Card(P ), 0 ≤ j ≤ k}. Then, construct a
symbiotic E0L grammar G′ = (W,T, P ′, S′), where the set of productions is defined in
the following way:

1. add S′ → @S# to P ′;

2. for every production n:X1X2 . . . Xn → y ∈ P add these rules to P ′ (where n is a
label, 0 <≤ Card(P ):

X1 → 〈n, 0〉 τ(y) 〈n, 1〉
X2 → 〈n, 1〉 〈n, 2〉
X3 → 〈n, 2〉 〈n, 3〉

...
Xn → 〈n, k − 1〉 〈n, k〉

3. add @ → @ 〈i, 0〉 , 0 < i ≤ Card(P ) to P ′;

4. add # → 〈i, k〉#, to P ′ for each production i:X1X2 . . . Xk → y ∈ P ;

5. add @ → ε;

6. add # → ε;

7. for each A ∈ V ∪ T̃ add productions of this form to P ′: A → 〈i, j〉A 〈i, j〉 , 0 < i ≤
Card(P ), 0 ≤ j ≤ k;

8. add these productions to P ′: 〈i, j〉 → ε, 0 < i ≤ Card(P ), 0 ≤ j ≤ k;

9. add production ã → a for each a ∈ T to P ′.

Theorem 2. Let G = (V, T, P, S) be a phrase-structured grammar. Let G′ be a symbiotic
E0L grammar constructed by Construction 2 with G as its input. Then, L(G) = L(G′).
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Proof. Let ω be a homomorphism from V ′ to V ′−V ′′ defined as ω(a) = ε for all a ∈ V ′′,
and ω(a) = a, for all a ∈ V ′ − V ′′.

Claim 10. For every w ∈ W ∗ holds,

1. S′ ⇒+
G w if and only if @S# ⇒∗

G w;

2. S′ ⇒+
G w implies S′ 6∈ sub(w).

Proof. By the definition of P ′, it is easy to see that the very first derivation step always
rewrites S′ to @S#. Moreover, no productions generate S′; thus, S′ appears in no
sentential form derived from S′.

Claim 11. For all u, v ∈ W+, S′ 6∈ sub(uv), u ⇒G′ v if and only if ω(u) ⇒G′ v.

Proof. Examine the definition of P ′. Clearly, all occurrences of symbols from V ′′ are
always erased during u ⇒G′ v, so they play no role in the generation of v. By the
definition of W and ω, ω(u) ∈ W ∗; therefore ω(u) ⇒G′ is a valid derivation in G′.

Note that this property of derivations in G′ allows us to ignore symbols of forms
〈i, j〉 occuring in left-hand sides of derivation steps.

Claim 12. Let @y# ⇒G′ @x#, where y = a1a2 . . . an for some ai ∈ V, x ∈ W ∗, n ≥ 0.
Then, @x# = @ 〈i, 0〉 〈i, 0〉x1 〈i, 0〉 〈i, 0〉x2 〈i, 0〉 . . . 〈i, 0〉 〈i, 1〉xm 〈i, 2〉 〈i, 2〉 〈i, 3〉 〈i, 3〉 . . .
〈i, k〉 〈i, k〉xn 〈i, k〉 〈i, k〉xn+1 〈i, k〉 . . . 〈i, k〉#, where xj ∈ V ∗ for all j = 1, 2, . . . ,m and
some 0 < i ≤ Card(P ).

Proof. Since x is surrounded by @ and # in @x#, G′ surely rewrites @x# in such way,
that @ is rewritten to some @ 〈i, 0〉 and # to 〈j, k〉 , 0 ≤ i, j ≤ Card(P ). Every Al can be
rewritten either to 〈i, j〉xl 〈i, j〉 or (if such production exists) to 〈i, j − 1〉xl 〈i, j〉, where
0 < i ≤ Card(P ), 0 ≤ j ≤ k, xi ∈ V ∗. Thus, @x# = @ 〈i, 0〉α1z1β1α2z2β2 . . . αnznβn

〈j, k〉# with αl = 〈i, j〉 , zl = xl, βl = 〈i, j〉, or αl = 〈i, j − 1〉 , zl = xl, βl = 〈i, j〉, for all
l = 1, 2, . . . n. However, @x# must be a string over W . Inspect the definition of W to
see that @x# ∈ W ∗ if and only if α1 = 〈i, 0〉 and βn 〈i, k〉. Then, β1 could be only 〈i, 0〉
or 〈i, 1〉. In same way αn could be only 〈i, k〉 or 〈i, k − 1〉. We can simply show, that
we can get only sentential form @ 〈i, 0〉 〈i, 0〉x1 〈i, 0〉 〈i, 0〉x2 〈i, 0〉 . . . 〈i, 0〉 〈i, 1〉xm 〈i, 2〉
〈i, 2〉 〈i, 3〉 〈i, 3〉 . . . 〈i, k〉 〈i, k〉xn 〈i, k〉 . . . 〈i, k〉xn+1 〈i, k〉 . . . 〈i, k〉#

Claim 13. Let @y# ⇒G′ x, where y = a1a2 . . . an and {@,#} ∩ sub(x) = ∅ for some
ai ∈ V, x ∈ W ∗, n ≥ 0. Then, x = 〈i, 0〉 〈i, 0〉 τ(t1) 〈i, 0〉 . . . 〈i, k〉 τ(tk) 〈i, k〉 〈i, k〉, where
ti ∈ T ∗ for all i = 1, 2, . . . , n.

Proof. Prove this claim by analogy with the proof of Claim 12.

The following claim shows that Claims 12 and 13 cover all possible ways of rewriting
of a string having the form @y#, y ∈ V ∗, in G′.

Claim 14. Let @y# ⇒G′ u, y ∈ V ∗. Then, either u = @x#, x ∈ W ∗, or u ∈ W ∗, ω(u) ∈
T ∗, and {@,#} ∩ sub(u) = ∅.
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Proof. Return to the proof of Claim 12. Suppose that @ is rewritten to @ 〈i, 0〉 and #
is rewritten to ε. Then we can construct only strings of the form z = @x 〈i, j〉 y 〈i, k〉,
where x ∈ W ∗, y ∈ V ∗ and last symbol of y is from V − V ′′. It is clear, that z 6∈ W ∗.
Analogously, suppose that @ is rewritten to ε and # is rewritten to 〈i, k〉#. As before,
such a sentential form is out of W ∗.

Claim 15. Let u ⇒G′ v, u ∈ W ∗, {@,#} ∩ sub(u) = ∅. Then v ∈ T ∗.

Proof. From the Claim 14 we see, that ω(u) ∈ T ∗. Then, we have to consider only
productions with its left sides from T̃ , because it is the only possibility. Such productions
are of the form t̃ → 〈i, j〉 t 〈i, j〉 or t̃ → t, where t ∈ T, 0 < i ≤ Card(P ), j ≥ 1. Then,
string v could have one of the following forms:

1. u = 〈i, j〉 t 〈i, j〉 y, t ∈ T, 0 < i ≤ Card(P ), 0 ≤ j, y ∈ (V ′′ ∪ T )∗;

2. u = x 〈i, j〉 t 〈i, j〉 y, x ∈ T ∗, t ∈ T, y ∈ (V ′′ ∪ T )∗;

3. u = t1t2 . . . tn, ti ∈ T .

It is easy to see, that only third form is the legal one. The others are out of W .

Claim 16. Every derivation in G′ is a prefix of

S′ ⇒G′ @w0#
⇒G′ @w1#

...
⇒G′ @wn#
⇒G′ u
⇒G′ t

where w0 = S, wi ∈ W ∗, ω(u) = τ(t), t ∈ T ∗, 0 ≤ i ≤ n, n ≥ 0.

Proof. By the proof of Claim 10, S′ is always rewritten to @w0#, where w0 = S. Then,
Claim 14 tells us that there are two possible forms of derivations rewriting ω(@wi#)
and, hence, @wi#. First, G′ can generate a sequence of n sentential forms that belong
to {@}W ∗{#}, for some n ≥ 0 (their form is described in Claim 12). Second, G′ can
rewrite @wn# to u ∈ W ∗, satisfying ω(u) ∈ T̃ ∗ (see Claim 13). By the Claim 15 the
only form, to which could be rewritten u is t. Therefore, u ⇒G′ t such that t ∈ T ∗

and ω(u) = τ(t). After that, no other derivation step can be made from t because P ′

contains no production that rewrites terminals.

Claim 17. For all x, y ∈ V ∗, u ∈ W ∗ it holds

y ⇒G x if and only if @y# ⇒G′ @u#

where x = ω(u).
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Proof. Let b = b1b2 . . . bn, bi ∈ V and x ∈ V ′′, then γ(b, x) = xb1xxb2x . . . xbnx.

Only If : Let y ⇒G x. Express y and x as y = a1A1a2A2 . . . anAnan+1 and x =
a1x1a2x2 . . . anxnxn+1 and corresponding production from P : l: (A1, A2, . . . , An) →
(x1, x2, . . . , xn), which is applied during y ⇒G x. Then, for such production exist n corre-
sponding productions in P ′ (see Construction 2). Then, with use of Claim 12, we can con-
struct @y# ⇒G′ @ 〈l, 0〉 γ(a1, 〈l, 0〉) 〈l, 0〉x1 〈l, 1〉 γ(a2, 〈l, 1〉) 〈l, 1〉 〈l, 2〉 . . . 〈l, n〉 γ(xn−1,
〈l, n− 1〉) 〈l, n− 1〉xn 〈l, n〉 γ(xn+1, 〈l, n〉) 〈l, n〉#, where γ(b, x), a ∈ V ∗, x ∈ V ′′ is de-
fined as this: Obviously, ω(y) = a1x1a2x2 . . . anxnxn+1 = x.

If : Let @y# ⇒G′ @u#. Express y as y = a1a2 . . . an, ai ∈ V, n ≥ 0. By the proof of
Claim 12 we can see, that each ai could be rewritten to 〈l,m〉xi 〈l, m〉 or to 〈l, m− 1〉xi

〈l, m〉 (by the proof of Claim 11 we ignore ai ∈ V ′′). In the first case it corresponds to
use no rule in G. In the second case there will be (by the proof of the claim) n such cases
corresponding to use productions derived from original production (A1, A2, . . . , An) →
(y1, y2, . . . , yn). Then, y ⇒G x such that x = x1x2 . . . xn = ω(u).

Claim 18. For all t ∈ T ∗, y ∈ V ∗, u ∈ W ∗, it hold

y ⇒G t if and only if @y# ⇒G′ u

where τ(t) = ω(u).

Proof. By the analogy with the proof of Claim 17.

From the above claims, it is easy to prove that

S ⇒∗
G t if and only if S′ ⇒+

G′ t

for all t ∈ T ∗.

Only If : Let S ⇒G v1 ⇒G v2 ⇒G . . . ⇒G vn ⇒t for some n ≥ 0. Then, there
exists S′ ⇒G′ @S# ⇒G′ @w1# ⇒G′ @w2# ⇒G′ . . . ⇒G′ @wn# ⇒G′ u ⇒G′ t, where
vi = ω(wi) for all i = 1, . . . , n and τ(t) = ω(u).

If : By Claim 16, S′ ⇒+
G′ t has the form S′ ⇒G′ @S# ⇒G′ @w1# ⇒G′ @w2# ⇒G′

. . . ⇒G′ @wn# ⇒G′ u ⇒G′ t, n ≥ 0. For this derivation we can construct S ⇒G v1 ⇒G

v2 ⇒G . . . ⇒G vn ⇒G t so that vi = ω(wi) for all i = 1, . . . , n.
Therefore, L(G) = L(G)′, and the theorem holds. �

5 Derivation simulations

5.1 Definitions

Now we have to repeat some needed definitions. Definitions as a whole were introduced
in [1] and there can be found reasons of their existence and so on. Here we only repeat
their readings because they will be used in the following subsections.
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Definition 1. A string-relation system is a quadruple Ψ = (W,⇒,W0,WF ), where W is
a language, ⇒ is a binary relation on W , W0 ⊆ W is a set of start strings, and WF ⊆ W
is a set of final strings.

Every string, w ∈ W , represents a 0-step string-relation sequence in Ψ. For every
n ≥ 1, a sequence w0, w1, . . . wn, wi ∈ W , 0 ≤ i ≤ n, is an n-step string-relation sequence,
symbolically written as w0 ⇒ w1 ⇒ . . . ⇒ wn, if for each 0 ≤ i ≤ n− 1, wi ⇒ wi+1.

If there is a string-relation sequence w0 ⇒ w1 ⇒ . . . ⇒ wn, where n ≥ 0, we write
w0 ⇒n wn. Furthermore, w0 ⇒∗ wn means that w0 ⇒n wn for some n ≥ 0, and
w0 ⇒+ wn means that w0 ⇒n wn for some n ≥ 1. Obviously, from the mathematical
point of view, ⇒+ and ⇒∗ are the transitive closure of ⇒ and the transitive and reflexive
closure of ⇒, respectively.

Let Ψ = (W,⇒,W0,WF ) be a string-relation system. A string-relation sequence in
Ψ, u ⇒∗ v, where u, v ∈ W , is called a yield sequence, if u ∈ W0. If u ⇒∗ v is a yield
sequence and v ∈ WF , u ⇒∗ v is successful.

Let D(Ψ) and SD(Ψ) denote the set of all yield sequences and all successful yield
sequences in Ψ, respectively.

Definition 2. Let Ψ = (W,⇒Ψ,W0,WF ) and Ω = (W ′,⇒Ω,W ′
0,W

′
F ) be two string-

relation systems, and let σ be a substitution from W ′ to W . Furthermore, let d be a
yield sequence in Ψ of the form w0 ⇒Ψ w1 ⇒Ψ . . . ⇒Ψ wn−1 ⇒Ψ wn, where wi ∈ W ,
0 ≤ i ≤ n, for some n ≥ 0. A yield sequence, h, in Ω simulates d with respect to σ,
symbolically written as h Bσ d, if h is of the form y0 ⇒m1

Ω y1 ⇒m2
Ω . . . ⇒mn−1

Ω yn−1 ⇒mn
Ω

yn, where yj ∈ W ′, 0 ≤ j ≤ n, mk ≥ 1, 1 ≤ k ≤ n, and wi ∈ σ(yi) for all 0 ≤ i ≤ n. If,
in addition, there exists m ≥ 1 such that mk ≤ m for each 1 ≤ k ≤ n, then h m-closely
simulates d with respect to σ, symbolically written as h Bm

σ d.

Definition 3. Let Ψ = (W,⇒Ψ,W0,WF ) and Ω = (W ′,⇒Ω,W ′
0,W

′
F ) be two string-

relation systems, and let σ be a substitution from W ′ to W . Let X ⊆ D(Ψ) and
Y ⊆ D(Ω). Y simulates X with respect to σ, written as Y Bσ X, if the following two
conditions hold:

1. for every d ∈ X, there is h ∈ Y such that h Bσ d;

2. for every h ∈ Y , there is d ∈ X such that h Bσ d.

Let m be a positive integer. Y m-closely simulates X with respect to σ, Y Bm
σ X,

provided that:

1. for every d ∈ X, there is h ∈ Y such that h Bm
σ d;

2. for every h ∈ Y , there is d ∈ X such that h Bm
σ d.

Definition 4. Let Ψ = (W,⇒Ψ,W0,WF ) and Ω = (W ′,⇒Ω,W ′
0,W

′
F ) be two string-

relation systems. If there exists a substitution σ from W ′ to W such that D(Ω) Bσ D(Ψ)
and SD(Ω) Bσ SD(Ψ), then Ω is said to be Ψ’s derivation simulator and successful-
derivation simulator, respectively. Furthermore, if there is an integer, m ≥ 1, such that
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D(Ω) Bm
σ D(Ψ) and SD(Ω) Bm

σ SD(Ψ), Ω is called an m-close derivation simulator and
m-close successful-derivation simulator of Ψ, respectively. If there exists a homomor-
phism ρ from W ′ to W such that D(Ω) Bρ D(Ψ), SD(Ω) Bρ SD(Ψ), D(Ω) Bm

ρ D(Ψ),
and SD(Ω) Bm

ρ SD(Ψ), then Ω is Ψ’s homomorphic derivation simulator, homomorphic
successful-derivation simulator, m-close homomorphic derivation simulator and m-close
homomorphic successful-derivation simulator, respectively.

5.2 Derivation simulation of Scattered Context Grammars

Definition 5. Let G = (V, T, P, S) be a scattered context grammar. Let ⇒G be the
direct derivation relation in G. For ⇒G and every l ≥ 0, set

∆(⇒G, l) = {x ⇒G y : x ⇒G y ⇒i
G w, x, y ∈ V ∗, w ∈ T ∗, i + 1 = l, i ≥ 0}.

Next, let G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2) be scattered context gram-
mars. Let ⇒G1

and ⇒G2
be the derivation relations of G1 and G2, respectively. Let

σ be a substitution from V2 to V1. G2 simulates G1 with respect to σ, D(G2) BD (G1)
in symbols, if there exists two natural numbers k, l ≥ 0 so that the following conditions
hold:

1. Ψ1 = (V ∗
1 ,⇒G1

, {S1}, T ∗
1 ) and Ψ2 = (V ∗

2 ,⇒Ψ2
,W0,WF ) are string-relation sys-

tems corresponding to G1 and G2, respectively, where W0 = {x ∈ V ∗
2 : S2 ⇒k

G2
x}

and WF = {x ∈ V ∗
2 : x ⇒l

G2
w,w ∈ T ∗

2 , σ(w) ⊆ T ∗
1 };

2. relation ⇒Ψ2
coincides with ⇒G2

− ∆(⇒G2
, l);

3. D(Ψ2) Bσ D(Ψ1).

In case that SD(Ψ2) Bσ SD(Ψ1), G2 simulates successful derivations of G1 with
respect to σ; in symbols, SD(G2) Bσ SD(G1).

Definition 6. Let G1 and G2 be scattered context grammars with total alphabets
V1 and V2, terminal alphabets T1 and T2, and axioms S1 and S2, respectively. Let
σ be a substitution from V2 to V1. G2 m-closely simulates G1 with respect to σ if
D(G2) Bσ D(G1) and there exists m ≥ 1 such that the corresponding string-relation
systems Ψ1 and Ψ2 satisfy D(Ψ2) Bm

σ D(Ψ1). In symbols, D(G2) Bm
σ D(G1).

Analogously, G2 m-closely simulates successful derivations of G1 with respect to σ,
denoted by SD(G2) Bm

σ SD(G1), if SD(Ψ2) Bm
σ SD(Ψ1) and there exists m ≥ 1 such

that SD(G2) Bm
σ SD(G1).

Definition 7. Let G1 and G2 be two scattered context grammars. If there exists a sub-
stitution σ such that D(G2) Bσ D(G1), then G2 is said to be G1’s derivation simulator.

By analogy with Definition 7, the reader can also define homomorphic, m-close, and
successful-derivation simulators of scattered context grammars.
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Theorem 3. Let G = (V, T, P, S) be a scattered context grammar and G′ = (W,T, P ′, S′)
be a symbiotic E0L grammar constructed by using Construction 1 with G as its in-
put. Then, there exists a homomorphism ω̃ such that D(G′) B1

ω̃ D(G) and SD(G′) B1
ω̃

SD(G).

Proof. Let Ψ = (V ∗,⇒G, {S}, T ∗) be a string-relation system corresponding to G. Let ω̃
be the homomorphism defined in the proof of Theorem 1. Let Ψ′ = ((V ′)∗,⇒Ψ′ ,W0,WF )
be a string-relation system corresponding to G′, where

⇒Ψ′ = ⇒G′− {〈i, 0〉 〈i, 0〉 τ(t1) 〈i, 0〉 . . . 〈i, k〉 τ(tn) 〈i, k〉 〈i, k〉} ⇒G′ t1t2 . . . tn :
0 < i ≤ Card(P ), tj ∈ T ∗, 1 ≤ j ≤ n, n ≥ 0}

W0 = {@S#}
WF = {〈i, 0〉 〈i, 0〉 τ(t1) 〈i, 0〉 . . . 〈i, k〉 τ(tn) 〈i, k〉 〈i, k〉 :

0 < i ≤ Card(P ), tj ∈ T ∗, 1 ≤ j ≤ n, n ≥ 0}

It is easy to verify, that Ψ and Ψ′ satisfy (1) through (3) of Definition 5; of course
S′ ⇒1

G′ @S# and for every u ∈ WF , u ⇒1 G′t, where t ∈ T ∗ (see Claim 7 in the proof of
Theorem 1). Next, we show that D(Ψ′) B1

ω̃ D(Ψ). By Definition 3, we have to establish
that

1. for every d ∈ D(Ψ), there exists h ∈ D(Ψ′) such that h B1
ω̃ d;

2. for every h ∈ D(Ψ′), there exists d ∈ D(Ψ) so that h B1
ω̃ d.

(Note that most of this proof is based on substitutions and claims introduced in the
proof of Theorem 1).

(1) Let d ∈ D(Ψ). Express d as d = v0 ⇒G v1 ⇒G v2 ⇒G . . . ⇒G vn, v0 = S, for
some n ≥ 0. For n = 0, there is @S# ∈ Ψ′ such that zero-length derivations S and @S#
satisfy S B1 ω̃@S#. Assume that n > 0. Then, according to Claims 2 and 8, vi ⇒G vi+1

if and only if @wi# ⇒G′ @wi+1#, where vi+1 = ω(wi+1) = ω̃(@wi+1#), wi, wi+1 ∈
W ∗, 0 ≤ i ≤ n − 1. Moreover, by the definition of Ψ′,@wi# ⇒Ψ′ @wi+1# for all
i = 0, . . . , n − 1. Hence, by induction on the length of derivations in G, the reader can
easily establish that for every d ∈ D(Ψ), there exists h ∈ D(Ψ′) such that h B1

ω̃ d.
(2) Let h ∈ D(Ψ). By the definition of ⇒Ψ′ and Claim 7, every yield sequence in Ψ′

is a prefix of @w0# ⇒Ψ′ @w1# ⇒Ψ′ . . . ⇒Ψ′ @wn# ⇒Ψ′ u, where w0 = s, wi ∈ W ∗,
u ∈ WF , 0 ≤ i ≤ n, n ≤ 0. The zero-length derivation @s# is a 1-close simulation
of s from G. Claims 2 and 8 imply that for every @wi# ⇒Ψ′ @wi+1#, there exists
vi ⇒G vi+1 for some vi, vi+1 ∈ V ∗, vi+1 = ω(wi+1) = ω̃(@wi+1#), 0 ≤ i ≤ n − 1.
Furthermore, according to Claims 4 and 9, for @wn# ⇒Ψ′ u, there exists vn ⇒G t such
that t ∈ T ∗, τ(t) = ω(u); that is, ω̃(u) = t. Clearly, every derivation step in h is a
simulation of a corresponding derivation step in d; as a result, h B1

ω̃ d.
Next, we prove that SD(G′) B1

ω̃ SD(G). From (2), it follows that every successful
yield sequence h ∈ SD(Ψ′) is a 1-close simulation of a derivation s ⇒∗

G t with t ∈ T ∗.
To prove that for every d ∈ SD(Ψ), there exists h ∈ SD(Ψ′) such that h B1

ω̃ d, return
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to case (1) in this proof. Assume that v0 ⇒n
G vn, vn ∈ T ∗, n ≥ 1. Then, there exists a

derivation @wn−1# ⇒Ψ′ u, u ∈ WF (see Claim 9), such that τ(vn) = ω(u) which implies
ω̃(u) = vn. Therefore, we get h B1

ω̃ d, so SD(G′) B1
ω̃ SD(G).

Theorems 1 and 3 show that for every scattered context grammar G = (V, T, P, S),
there exists a symbiotic E0L grammar G′ = (W ′, T, P ′, S′) such that

1. L(G) = L(G′);

2. G′ is a 1-close homomorphic derivation simulator of G′;

3. G′ is a 1-close homomorphic successful-derivation simulator of G;

4. To simulate G, G′ uses one initial derivation step (S′ ⇒G′ @S#) and one deriva-
tion step that removes auxiliary symbols (〈i, 0〉 〈i, 0〉 τ(t1) 〈i, 0〉 . . . 〈i, k〉 τ(tn) 〈i, k〉
〈i, k〉 ⇒G′ t1t2 . . . tn : 0 < i ≤ Card(P ), tj ∈ T ∗, 1 ≤ j ≤ n, n ≥ 0).

5.3 Derivation simulation of Phrase-Structured Grammars

Definition 8. Let G = (V, T, P, S) be a phrase-structured grammar. Let ⇒G be the
direct derivation relation in G. For ⇒G and every l ≥ 0, set

∆(⇒G, l) = {x ⇒G y : x ⇒G y ⇒i
G w, x, y ∈ V ∗, w ∈ T ∗, i + 1 = l, i ≥ 0}.

Next, let G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2) be phrase-structured gram-
mars. Let ⇒G1

and ⇒G2
be the derivation relations of G1 and G2, respectively. Let

σ be a substitution from V2 to V1. G2 simulates G1 with respect to σ, D(G2) BD (G1)
in symbols, if there exists two natural numbers k, l ≥ 0 so that the following conditions
hold:

1. Ψ1 = (V ∗
1 ,⇒G1

, {S1}, T ∗
1 ) and Ψ2 = (V ∗

2 ,⇒Ψ2
,W0,WF ) are string-relation sys-

tems corresponding to G1 and G2, respectively, where W0 = {x ∈ V ∗
2 : S2 ⇒k

G2
x}

and WF = {x ∈ V ∗
2 : x ⇒l

G2
w,w ∈ T ∗

2 , σ(w) ⊆ T ∗
1 };

2. relation ⇒Ψ2
coincides with ⇒G2

− ∆(⇒G2
, l);

3. D(Ψ2) Bσ D(Ψ1).

In case that SD(Ψ2) Bσ SD(Ψ1), G2 simulates successful derivations of G1 with
respect to σ; in symbols, SD(G2) Bσ SD(G1).

Definition 9. Let G1 and G2 be phrase-structured grammars with total alphabets
V1 and V2, terminal alphabets T1 and T2, and axioms S1 and S2, respectively. Let
σ be a substitution from V2 to V1. G2 m-closely simulates G1 with respect to σ if
D(G2) Bσ D(G1) and there exists m ≥ 1 such that the corresponding string-relation
systems Ψ1 and Ψ2 satisfy D(Ψ2) Bm

σ D(Ψ1). In symbols, D(G2) Bm
σ D(G1).

Analogously, G2 m-closely simulates successful derivations of G1 with respect to σ,
denoted by SD(G2) Bm

σ SD(G1), if SD(Ψ2) Bm
σ SD(Ψ1) and there exists m ≥ 1 such

that SD(G2) Bm
σ SD(G1).
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Definition 10. Let G1 and G2 be two phrase-structured grammars. If there exists
a substitution σ such that D(G2) Bσ D(G1), then G2 is said to be G1’s derivation
simulator.

By analogy with Definition 7, the reader can also define homomorphic, m-close, and
successful-derivation simulators of phrase-structured grammars.

Theorem 4. Let G = (V, T, P, S) be a phrase-structured grammar, G′ = (W,T, P ′, S′) be
a symbiotic E0L grammar constructed by using Construction 2 with G as its input. Then,
there exists a homomorphism ω̃ such that D(G′) B1

ω̃ D(G) and SD(G′) B1
ω̃ SD(G).

Proof. Let Ψ = (V ∗,⇒G, {S}, T ∗) be a string-relation system corresponding to G. Let ω̃
be the homomorphism defined in the proof of Theorem 2. Let Ψ′ = ((V ′)∗,⇒Ψ′ ,W0,WF )
be a string-relation system corresponding to G′, where

⇒Ψ′ = ⇒G′− {〈i, 0〉 〈i, 0〉 τ(t1) 〈i, 0〉 . . . 〈i, k〉 τ(tn) 〈i, k〉 〈i, k〉} ⇒G′ t1t2 . . . tn :
0 < i ≤ Card(P ), tj ∈ T ∗, 1 ≤ j ≤ n, n ≥ 0}

W0 = {@S#}
WF = {〈i, 0〉 〈i, 0〉 τ(t1) 〈i, 0〉 . . . 〈i, k〉 τ(tn) 〈i, k〉 〈i, k〉 :

0 < i ≤ Card(P ), tj ∈ T ∗, 1 ≤ j ≤ n, n ≥ 0}

It is easy to verify, that Ψ and Ψ′ satisfy (1) through (3) of Definition 8; of course
S′ ⇒1

G′ @S# and for every u ∈ WF , u ⇒1 G′t, where t ∈ T ∗ (see Claim 16 in the
proof of Theorem 2). Next, we show that D(Ψ′) B1

ω̃ D(Ψ). By Definition 3, we have to
establish that

1. for every d ∈ D(Ψ), there exists h ∈ D(Ψ′) such that h B1
ω̃ d;

2. for every h ∈ D(Ψ′), there exists d ∈ D(Ψ) so that h B1
ω̃ d.

(Note that most of this proof is based on substitutions and claims introduced in the
proof of Theorem 2).

(1) Let d ∈ D(Ψ). Express d as d = v0 ⇒G v1 ⇒G v2 ⇒G . . . ⇒G vn, v0 = S, for
some n ≥ 0. For n = 0, there is @S# ∈ Ψ′ such that zero-length derivations S and @S#
satisfy S B1 ω̃@S#. Assume that n > 0. Then, according to Claims 11 and 17, vi ⇒G

vi+1 if and only if @wi# ⇒G′ @wi+1#, where vi+1 = ω(wi+1) = ω̃(@wi+1#), wi, wi+1 ∈
W ∗, 0 ≤ i ≤ n − 1. Moreover, by the definition of Ψ′,@wi# ⇒Ψ′ @wi+1# for all
i = 0, . . . , n − 1. Hence, by induction on the length of derivations in G, the reader can
easily establish that for every d ∈ D(Ψ), there exists h ∈ D(Ψ′) such that h B1

ω̃ d.
(2) Let h ∈ D(Ψ). By the definition of ⇒Ψ′ and Claim 16, every yield sequence in

Ψ′ is a prefix of @w0# ⇒Ψ′ @w1# ⇒Ψ′ . . . ⇒Ψ′ @wn# ⇒Ψ′ u, where w0 = s, wi ∈ W ∗,
u ∈ WF , 0 ≤ i ≤ n, n ≤ 0. The zero-length derivation @s# is a 1-close simulation
of s from G. Claims 11 and 17 imply that for every @wi# ⇒Ψ′ @wi+1#, there exists
vi ⇒G vi+1 for some vi, vi+1 ∈ V ∗, vi+1 = ω(wi+1) = ω̃(@wi+1#), 0 ≤ i ≤ n − 1.
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Furthermore, according to Claims 13 and 18, for @wn# ⇒Ψ′ u, there exists vn ⇒G t
such that t ∈ T ∗, τ(t) = ω(u); that is, ω̃(u) = t. Clearly, every derivation step in h is a
simulation of a corresponding derivation step in d; as a result, h B1

ω̃ d.
Next, we prove that SD(G′) B1

ω̃ SD(G). From (2), it follows that every successful
yield sequence h ∈ SD(Ψ′) is a 1-close simulation of a derivation s ⇒∗

G t with t ∈ T ∗.
To prove that for every d ∈ SD(Ψ), there exists h ∈ SD(Ψ′) such that h B1

ω̃ d, return
to case (1) in this proof. Assume that v0 ⇒n

G vn, vn ∈ T ∗, n ≥ 1. Then, there exists
a derivation @wn−1# ⇒Ψ′ u, u ∈ WF (see Claim 18), such that τ(vn) = ω(u) which
implies ω̃(u) = vn. Therefore, we get h B1

ω̃ d, so SD(G′) B1
ω̃ SD(G).

Theorems 2 and 4 show that for every phrase-structured grammar G = (V, T, P, S),
there exists a symbiotic E0L grammar G′ = (W ′, T, P ′, S′) such that

1. L(G) = L(G′);

2. G′ is a 1-close homomorphic derivation simulator of G′;

3. G′ is a 1-close homomorphic successful-derivation simulator of G;

4. To simulate G, G′ uses one initial derivation step (S′ ⇒G′ @S#) and one deriva-
tion step that removes auxiliary symbols (〈i, 0〉 〈i, 0〉 τ(t1) 〈i, 0〉 . . . 〈i, k〉 τ(tn) 〈i, k〉
〈i, k〉 ⇒G′ t1t2 . . . tn : 0 < i ≤ Card(P ), tj ∈ T ∗, 1 ≤ j ≤ n, n ≥ 0).

6 Conclusion

In this paper we have gained following results:

1. Every scattered context grammar G can be simulated by a symbiotic E0L grammar
G′, while these claims hold:

a) L(G) = L(G′);

b) G′ is a 1-close homomorphic derivation simulator of G;

c) G′ is a 1-close homomorphic successful-derivation simulator of G;

2. Every phrase-structured grammar G can be simulated by a symbiotic E0L grammar
G′, while these claims hold:

a) L(G) = L(G′);

b) G′ is a 1-close homomorphic derivation simulator of G;

c) G′ is a 1-close homomorphic successful-derivation simulator of G;
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