Example: the language TINY

- Two kinds of constructs: expressions (E) and commands (C)
- Both constructs can contain identifiers (I)-strings of letters and digits beginning with a letter

Syntax of TINY:
$E::=0|1|$ true \mid false $|I|$ not $E\left|E_{1}=E_{2}\right| E_{1}+E_{2}$
C ::= $:=E$ | output $E \mid$ if E then C_{1} else $C_{2} \mid$
while E do C $\mid \mathbf{C}_{1}$; \mathbf{C}_{2}

Standard semantics

- Denotational semantics is not able to handle constructs of real languages like
$>$ jumps, or
$>$ aliasing (multiple names of one variable).
- Therefore, more sophisticated denotations are needed-standard semantics is used.
- Standard semantics is based on
$>$ transforming states indirectly via continuations,
$>$ splitting the binding of identifiers to values into two parts: id \rightarrow variable, variable \rightarrow value.

Direct semantics vs. continuation semantics

- Denotational semantics is an example of direct semantics.
- In direct semantics:
$>$ each construct directly denotes its input/output transformation;
$>$ the transformation of the complete program is a combination of its components' transformations;
$>$ the result of a construct is always passed to the rest of the program \Rightarrow the rest of the program has to cope with abnormal values \Rightarrow it is stuffed with test for these values.

Direct semantics vs. continuation semantics

- In continuation semantics:
$>$ denotation of a construct depends on the rest of the program-or continuation-following it;
$>$ each construct decides for itself where to pass its result:
- usually to the normal continuation (corresponds to the textually following code);
- to the continuation corresponding to an error stop;
- to the continuation corresponding to the code following a label, target of a jump.

Continuations

- A continuation is a function from an intermediate result expected by the rest of the program (e.g. state, or value-state pair) to the final answer (e.g. state + error, or output + error).
- Command continuations correspond to the rest of the program following a command and form a domain Cont $=$ State \rightarrow [State + \{error $\}]$
- Expression continuations correspond to the code following expressions and form a domain

Econt $=$ Value \rightarrow State \rightarrow [State $+\{$ error $\}]$

Continuation denotations of constructs

- In a continuation semantics the denotations of constructs are functions of continuations and states.
- The continuation semantic functions are of type:

E: Exp \rightarrow Econt \rightarrow State \rightarrow [State + \{error $\}]$
C: Com \rightarrow Cont \rightarrow State \rightarrow [State + \{error $\}]$ and they are defined so that:
$E[E] k s= \begin{cases}k v s^{\prime} & E \text { has value } v, \text { transforms } s \text { to } s^{\prime} \\ \text { error } & \text { otherwise }\end{cases}$
$C[C]$ c $s= \begin{cases}\text { c s' } & \text { if C transforms s to s' } \\ \text { error } & \text { otherwise }\end{cases}$

Sample semantic clauses of TINY

- Domains

State $=$ Memory \times Input \times Output
Memory = Ide \rightarrow [Value + \{unbound\}]
Input = Value*
Output $=$ Value ${ }^{*}$
Value = Num + Bool
Cont $=$ State \rightarrow [State + \{error $\}]$
Econt $=$ Value \rightarrow Cont

- Functions

E: Exp \rightarrow Econt \rightarrow Cont
C: Com \rightarrow Cont \rightarrow Cont

Sample semantic clauses of TINY

- Expressions:
$E[0] \mathrm{ks}=\mathrm{k} 0 \mathrm{~s}$, or by canceling $\mathrm{s}: E[0] \mathrm{k}=\mathrm{k} 0$
E [read] k (m,i,o) = null i \rightarrow error, k (hd i) (m,ti i,o)
$E[\mid] \mathrm{k}(\mathrm{m}, \mathrm{i}, \mathrm{o})=(\mathrm{ml}=$ unbound $) \rightarrow$ error, $\mathrm{k}(\mathrm{ml})(\mathrm{m}, \mathrm{i}, \mathrm{o})$
$E[$ not $E] k s=E[E]\left(\lambda v s^{\prime}\right.$. isBool $v \rightarrow k(n o t v) s^{\prime}$, error) s
- Commands:
$C[1:=E] c=E[E](\lambda v(m, i, o) \cdot c(m[v / l], i, o))$
C [output E] c = E[E] ($\lambda \vee(\mathrm{m}, \mathrm{i}, \mathrm{o}) \cdot \mathrm{c}(\mathrm{m}, \mathrm{i}, \mathrm{v} .0))$
$C\left[C_{1} ; C_{2}\right]$ c s $=C\left[C_{1}\right]\left(C\left[C_{2}\right] c\right) s$

Final answer of the program

- A state as the final answer of running a program is unnatural. In practice, it is just output.
- Once outputted information should not be retrieved by the rest of the program \Rightarrow the output must not be passed to it as a member of state.
- Once outputted information must not be lost, if an error occurs (probe C [output 0] c with c = λ s.error).
- An output of a program need not be finite. Consider the nonterminating program
$\mathbf{x}:=\mathbf{0}$; while true do (output $\mathbf{x} ; \mathbf{x}:=\mathbf{x}+1$) Its output is $0.1 .2 .3 \ldots$

Final answer of the program

- New domain equations are:

State $=$ Memory \times Input
Memory = Ide \rightarrow [Value + \{unbound\}]
Input $=$ Value ${ }^{*}$
Value $=$ Num + Bool
Cont $=$ State \rightarrow Ans
Econt = Value \rightarrow Cont
Ans $=\{$ error, stop $\}+[$ Value \times Ans $]$

- The semantic clause for output has to be changed:

C [output E] c = E [E] (λ v s . (v, c s))

Sharing

- Sometimes distinct identifiers can denote the same variable \Rightarrow assigning to one of them will change the value of the others.
- Sharing may occur:
$>$ directly-as the result of explicit command or declaration, e.g. let $\mathrm{I}_{1}=\mathrm{I}_{2}$.
$>$ indirectly-e.g. (in PASCAL) by declaring a procedure of the form procedure P(var x:real, var y:real)... and executing a call $\mathrm{P}(\mathrm{z}, \mathrm{z})$. Both x and y share the variable denoted by z .

Locations

- Sharing is enabled by two-level association between identifiers and values:

1. an identifier is bound to a variable,
2. the variable is bound to a value.

- In formal semantics, the term location is used rather than variable.
- Locations are modeled by the domain Loc.
- The only structure on Loc is $=:$ Loc \times Loc \rightarrow Bool which tests locations for equality.

Stores

- Stores model the binding of locations to values.
- The domain Store is defined as

$$
\text { Store }=\text { Loc } \rightarrow[\text { Sv }+\{\text { unused }\}]
$$

where Sv is a domain of storable values.

- The function new: Store \rightarrow [Loc + \{error\}] returns an unused location, or error, if an unused location is not available.
- The notation $v_{1}, \ldots, v_{n} i_{1}, \ldots, i_{n}$ denotes the "little" store: $\lambda \mathrm{i} . \mathrm{i}=\mathrm{i}_{1} \rightarrow \mathrm{v}_{1}, \ldots, \mathrm{i}=\mathrm{i}_{\mathrm{n}} \rightarrow \mathrm{v}_{\mathrm{n}}$, unused

Environments

- Environments model binding of identifiers.
- The domain Env of environments is defined as

$$
\text { Env = Ide } \rightarrow[\mathrm{Dv}+\{\text { unbound }\}]
$$

typical members will be $r, r^{\prime}, r_{1}, r_{2}$ etc.

- Dv is the domain of denotable values. Sometimes, it can identify with Loc, but for most languages it contains also constants, procedures etc.
- For $\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{n}} \in \operatorname{Dv}, \mathrm{l}_{1}, \ldots, \mathrm{I}_{n} \in$ Ide, $\mathrm{r}_{1}, \mathrm{r}_{2} \in E n v$ there are defined the following notations:
$>\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{n}} / I_{1}, \ldots, \mathrm{l}_{\mathrm{n}}=\left(\lambda I . \mathrm{I}=\mathrm{I}_{1} \rightarrow \mathrm{~d}_{1}, \ldots, \mathrm{l}=\mathrm{I}_{\mathrm{n}} \rightarrow \mathrm{d}_{\mathrm{n}}\right.$, unbound $)$
$>r_{1}\left[r_{2}\right]=\left(\lambda I . r_{2} \mid=\right.$ unbound $\left.\rightarrow r_{1} I, r_{2} I\right)$

Standard domains of values

- Unlike in TINY, in most languages we distinguish several value domains. The most important are:
$>$ storable values Sv-can be stored in locations; typical members will be $\mathrm{v}, \mathrm{v}^{\prime}, \mathrm{v}_{1}, \mathrm{v}_{2}$ etc.;
$>$ denotable values Dv-can be denoted by an identifier in the environment; typical members will be $\mathrm{d}, \mathrm{d}^{\prime}, \mathrm{d}_{1}, \mathrm{~d}_{2}$ etc.;
$>$ expressible values Ev-results of expressions; typical members will be e, e', $\mathrm{e}_{1}, \mathrm{e}_{2}$ etc.
- Other domains can also be needed, e.g. outputable values, R-values (domain Rv) etc.

Declarations and scope

- Declaration binds an identifier to a certain location.
- Scope of a declaration are the parts of a code where the declaration holds. (It is also possible to speak about scope of an identifier.)
- Example: declaration var I = E. It's effect is:

1. a new location, say i, is obtained;
2. E's value is stored in i;
3. i is bound to I in the environment.

- In standard semantics declarations change the environment and possibly the store. On the other side, command do only change the store.

Standard domains of continuations

Domain of command continuations Cc

- Definition: Cc = Store \rightarrow Ans
- Ans is a language-dependent domain of final answers
- Typical members will be $c, c^{\prime}, c_{1}, c_{2}$ etc.

Domain of expression continuations EC

- Definition: Ec $=\mathrm{Ev} \rightarrow$ Store \rightarrow Ans (or more neatly $\mathrm{Ec}=\mathrm{Ev} \rightarrow \mathrm{Cc}$)
- Typical members will be $k, k^{\prime}, k_{1}, k_{2}$ etc.

Domain of declaration continuations Dc

- Def.: Dc $=$ Env \rightarrow Store \rightarrow Ans (or Dc $=$ Env \rightarrow Cc)
- Typical members will be $u, u^{\prime}, \mathrm{u}_{1}, \mathrm{u}_{2}$ etc.

Standard semantic functions

- The following semantic functions are used:
$E:$ Exp \rightarrow Env \rightarrow Ec \rightarrow Store \rightarrow Ans for expressions, C: Com \rightarrow Env \rightarrow Cc \rightarrow Store \rightarrow Ans for commands, and D: Dec \rightarrow Env \rightarrow Dc \rightarrow Store \rightarrow Ans for declarations.
- The intuitive meanings are (omitting errors etc.):
$E[E] r k s=k e s ' \quad e$ is E 's value in environment r and store s, s^{\prime} is the store after E's evaluation.
$C[C] r \operatorname{secs} \quad s^{\prime}$ is the store after C's execution in environment r and store s.
$D[D]$ rus $=u r^{\prime} s^{\prime} \quad$ r' consists of bindings specified in D, s^{\prime} results from D's evaluation (with respect to r and s).

L and R values

- Consider I_{1} and I_{2} denoting locations i_{1} and i_{2} and the command $I_{1}:=I_{2}$. There are two possibilities:
$>$ location i_{2} is stored in location i_{1}, or
$>$ the contents of location i_{2} is stored in location i_{1}.
- The second case is the common one \Rightarrow in standard semantics we assume that expressions on the right of assignments have their values dereferenced-i.e. have their values looked up in the store if they are locations.

L and R values

- The following terminology is used:
$>$ expression's L-value is a value needed on the left of an assignment-a location; it is obtained by \boldsymbol{E} without any dereferencing.
$>$ expression's R-value is a value needed on the right of an assignment; it is (normally) obtained by dereferencing the value obtained by E.
- It is traditional to define new semantic functions
$L: E x p \rightarrow E n v \rightarrow E c \rightarrow C c$ and
$R: E x p \rightarrow E n v \rightarrow E c \rightarrow C c$
for obtaining L-values and R-values, respectively.

Procedures

- proc $I\left(I_{1}\right) ; C$-declaration of procedure named I with formal parameter I_{1} and body C.
- $I(E)$-call of the procedure $I ; C$ is executed in an environment identical to the one in which the procedure was declared, except that I_{1} denotes the E's value.
- The above type of evaluation is called static binding. There are also other types of bindings, e.g. dynamic binding using the call time environment.
- E in $\mathrm{I}(\mathrm{E})$ is called the actual parameter.

Procedures

- Domain of procedure values is

Proc $=\mathrm{Cc} \rightarrow \mathrm{Ev} \rightarrow$ Store \rightarrow Ans (or Proc $=\mathrm{Cc} \rightarrow \mathrm{Ec}$); typical members will be $p, p^{\prime}, p_{1}, p_{2}$ etc.

- Intuitively, if $p \in$ Proc then:
pces=cs' where s' is the store resulting from execution of p 's body.
- The procedure declaration binds a procedure value to an identifier as follows:
$D\left[\right.$ proc $\left.l\left(l_{1}\right) ; C\right] r u=u(p / I)$, where $p=\lambda c e . C[C] r\left[e / /_{1}\right] c$
- The semantics of procedure call is:
$C[(E)]$ res =
$E[I] r\left(\lambda e_{1} s_{1}\right.$ isProc $e_{1} \rightarrow E[E] r\left(\lambda e_{2} \mathrm{~s}_{2} \cdot \mathrm{e}_{1} c e_{2} \mathrm{~s}_{2}\right) \mathrm{s}_{1}$, error $) \mathrm{s}$

Functions

- Notice that function calls, unlike procedure calls, are expressions and also function bodies are expressions.
- Domain: Fun = Ec \rightarrow Ec

Typical members will be $f, f^{\prime}, f_{1}, f_{2}$ etc.

- The semantics of function declaration is:
D ffun $\left.I\left(I_{1}\right) ; E\right] r u=u(f / l)$, where $f=\lambda k e . E[E] r\left[e / /_{1}\right] k$
- The semantics of function call is:
$E[(E)]$ rks =
$E[1] r\left(\lambda e_{1} \mathrm{~s}_{1}\right.$ isFun $\mathrm{e}_{1} \rightarrow E[E] r\left(\lambda e_{2} \mathrm{~s}_{2} \cdot \mathrm{e}_{1} k e_{2} \mathrm{~s}_{2}\right) \mathrm{s}_{1}$, error $) \mathrm{s}$
- Notice that Proc and Fun are denotable values, i.e. their members have to be in Dv.

