
1

Example: the language TINY

• Two kinds of constructs: expressions (E) and
commands (C)

• Both constructs can contain identifiers (I)—strings of
letters and digits beginning with a letter

Syntax of TINY:

E ::= 0 | 1 | true | false | I | not E | E1 = E2 | E1 + E2

C ::= I := E | output E | if E then C1 else C2 |
while E do C | C1; C2

2

Standard semantics

• Denotational semantics is not able to handle
constructs of real languages like

jumps, or
aliasing (multiple names of one variable).

• Therefore, more sophisticated denotations are
needed—standard semantics is used.

• Standard semantics is based on
transforming states indirectly via continuations,
splitting the binding of identifiers to values into
two parts: id→variable, variable→value.

3

Direct semantics vs. continuation
semantics

• Denotational semantics is an example of direct
semantics.

• In direct semantics:
each construct directly denotes its input/output
transformation;
the transformation of the complete program is a
combination of its components’ transformations;
the result of a construct is always passed to the
rest of the program ⇒ the rest of the program has
to cope with abnormal values ⇒ it is stuffed with
test for these values.

4

Direct semantics vs. continuation
semantics

• In continuation semantics:
denotation of a construct depends on the rest of
the program—or continuation—following it;
each construct decides for itself where to pass its
result:
– usually to the normal continuation

(corresponds to the textually following code);
– to the continuation corresponding to an error

stop;
– to the continuation corresponding to the code

following a label, target of a jump.

5

Continuations

• A continuation is a function from an intermediate
result expected by the rest of the program (e.g. state,
or value–state pair) to the final answer (e.g. state +
error, or output + error).

• Command continuations correspond to the rest of the
program following a command and form a domain

Cont = State → [State + {error}]
• Expression continuations correspond to the code

following expressions and form a domain
Econt = Value → State → [State + {error}]

6

Continuation denotations of constructs

• In a continuation semantics the denotations of
constructs are functions of continuations and states.

• The continuation semantic functions are of type:
E: Exp → Econt → State → [State + {error}]
C: Com → Cont → State → [State + {error}]
and they are defined so that:

k v s’ E has value v, transforms s to s’
error otherwiseE [E] k s =

c s’ if C transforms s to s’
error otherwiseC [C] c s =

7

Sample semantic clauses of TINY

• Domains
State = Memory × Input × Output
Memory = Ide → [Value + {unbound}]
Input = Value*

Output = Value*

Value = Num + Bool
Cont = State → [State + {error}]
Econt = Value → Cont

• Functions
E: Exp → Econt → Cont
C: Com → Cont → Cont

8

Sample semantic clauses of TINY

• Expressions:
E [0] k s = k 0 s, or by canceling s: E [0] k = k 0
E [read] k (m,i,o) = null i → error, k (hd i) (m,tl i,o)
E [I] k (m,i,o) = (m I = unbound) → error, k (m I) (m,i,o)
E [not E] k s = E [E] (λ v s’ . isBool v → k (not v) s’,

error) s
• Commands:
C [I := E] c = E [E] (λ v (m,i,o) . c (m[v/I],i,o))
C [output E] c = E [E] (λ v (m,i,o) . c (m,i,v.o))
C [C1; C2] c s = C [C1] (C [C2] c) s

9

Final answer of the program

• A state as the final answer of running a program is
unnatural. In practice, it is just output.

• Once outputted information should not be retrieved
by the rest of the program ⇒ the output must not be
passed to it as a member of state.

• Once outputted information must not be lost, if an
error occurs (probe C [output 0] c with c = λs.error).

• An output of a program need not be finite. Consider
the nonterminating program

x:=0; while true do (output x; x:=x+1)
Its output is 0.1.2.3…

10

Final answer of the program

• New domain equations are:
State = Memory × Input
Memory = Ide → [Value + {unbound}]
Input = Value*

Value = Num + Bool
Cont = State → Ans
Econt = Value → Cont
Ans = {error, stop} + [Value × Ans]

• The semantic clause for output has to be changed:
C [output E] c = E [E] (λ v s . (v, c s))

11

Sharing

• Sometimes distinct identifiers can denote the same
variable ⇒ assigning to one of them will change the
value of the others.

• Sharing may occur:
directly—as the result of explicit command or
declaration, e.g. let l1 == l2.
indirectly—e.g. (in PASCAL) by declaring a
procedure of the form

procedure P(var x:real, var y:real)…
and executing a call P(z,z).
Both x and y share the variable denoted by z.

12

Locations

• Sharing is enabled by two-level association between
identifiers and values:
1. an identifier is bound to a variable,
2. the variable is bound to a value.

• In formal semantics, the term location is used rather
than variable.

• Locations are modeled by the domain Loc.
• The only structure on Loc is =: Loc × Loc → Bool

which tests locations for equality.

13

Stores

• Stores model the binding of locations to values.
• The domain Store is defined as

Store = Loc → [Sv + {unused}]
where Sv is a domain of storable values.

• The function new: Store → [Loc + {error}] returns an
unused location, or error, if an unused location is not
available.

• The notation v1,…,vn/i1,…,in denotes the “little” store:
λi . i = i1 → v1,…, i = in → vn, unused

14

Environments

• Environments model binding of identifiers.
• The domain Env of environments is defined as

Env = Ide → [Dv + {unbound}]
typical members will be r, r’, r1, r2 etc.

• Dv is the domain of denotable values. Sometimes, it
can identify with Loc, but for most languages it
contains also constants, procedures etc.

• For d1,…,dn∈Dv, I1,…,In∈Ide, r1, r2∈Env there are
defined the following notations:

d1,…,dn/I1,…,In = (λI . I=I1→d1,…, I=In→dn, unbound)
r1[r2] = (λI . r2 I = unbound → r1 I, r2 I)

15

Standard domains of values

• Unlike in TINY, in most languages we distinguish
several value domains. The most important are:

storable values Sv—can be stored in locations;
typical members will be v, v’, v1, v2 etc.;
denotable values Dv—can be denoted by an
identifier in the environment; typical members
will be d, d’, d1, d2 etc.;
expressible values Ev—results of expressions;
typical members will be e, e’, e1, e2 etc.

• Other domains can also be needed, e.g. outputable
values, R-values (domain Rv) etc.

16

Declarations and scope

• Declaration binds an identifier to a certain location.
• Scope of a declaration are the parts of a code where

the declaration holds. (It is also possible to speak
about scope of an identifier.)

• Example: declaration var I = E. It’s effect is:
1. a new location, say i, is obtained;
2. E’s value is stored in i;
3. i is bound to I in the environment.

• In standard semantics declarations change the
environment and possibly the store. On the other
side, command do only change the store.

17

Standard domains of continuations

Domain of command continuations Cc
• Definition: Cc = Store → Ans
• Ans is a language-dependent domain of final answers
• Typical members will be c, c’, c1, c2 etc.
Domain of expression continuations Ec
• Definition: Ec = Ev → Store → Ans (or more neatly

Ec = Ev → Cc)
• Typical members will be k, k’, k1, k2 etc.
Domain of declaration continuations Dc
• Def.: Dc = Env → Store → Ans (or Dc = Env → Cc)
• Typical members will be u, u’, u1, u2 etc.

18

Standard semantic functions

• The following semantic functions are used:
E: Exp→Env→Ec→Store→Ans for expressions,
C: Com→Env→Cc→Store→Ans for commands, and
D: Dec→Env→Dc→Store→Ans for declarations.

• The intuitive meanings are (omitting errors etc.):
E [E] r k s = k e s’ e is E’s value in environment r and store s, s’

is the store after E’s evaluation.

C [C] r c s = c s’ s’ is the store after C’s execution in
environment r and store s.

D [D] r u s = u r’ s’ r’ consists of bindings specified in D, s’ results
from D’s evaluation (with respect to r and s).

19

L and R values

• Consider I1 and I2 denoting locations i1 and i2 and the
command I1 := I2. There are two possibilities:

location i2 is stored in location i1, or
the contents of location i2 is stored in location i1.

• The second case is the common one ⇒ in standard
semantics we assume that expressions on the right of
assignments have their values dereferenced—i.e.
have their values looked up in the store if they are
locations.

20

L and R values

• The following terminology is used:
expression’s L-value is a value needed on the left
of an assignment—a location; it is obtained by E
without any dereferencing.
expression’s R-value is a value needed on the
right of an assignment; it is (normally) obtained
by dereferencing the value obtained by E.

• It is traditional to define new semantic functions
L: Exp→Env→Ec→Cc and
R: Exp→Env→Ec→Cc
for obtaining L-values and R-values, respectively.

21

Procedures

• proc I(I1);C—declaration of procedure named I with
formal parameter I1 and body C.

• I(E)—call of the procedure I; C is executed in an
environment identical to the one in which the
procedure was declared, except that I1 denotes the
E’s value.

• The above type of evaluation is called static binding.
There are also other types of bindings, e.g. dynamic
binding using the call time environment.

• E in I(E) is called the actual parameter.

22

Procedures

• The procedure declaration binds a procedure value to
an identifier as follows:

p c e s = c s’ where s’ is the store resulting from
execution of p’s body.

• Domain of procedure values is
Proc = Cc→Ev→Store→Ans (or Proc = Cc→Ec);
typical members will be p, p’, p1, p2 etc.

• Intuitively, if p∈Proc then:

D [proc I(I1);C] r u = u (p/I), where p = λce . C [C] r[e/I1] c
• The semantics of procedure call is:

C [I(E)] r c s =
E [I] r (λe1s1.isProc e1 → E [E] r (λe2s2.e1 c e2 s2) s1, error) s

23

Functions

• Notice that function calls, unlike procedure calls, are
expressions and also function bodies are expressions.

• Domain: Fun = Ec→Ec
Typical members will be f, f’, f1, f2 etc.

• The semantics of function declaration is:
D [fun I(I1);E] r u = u (f/I), where f = λke . E [E] r[e/I1] k

• The semantics of function call is:
E [I(E)] r k s =
E [I] r (λe1s1.isFun e1 → E [E] r (λe2s2.e1 k e2 s2) s1, error) s

• Notice that Proc and Fun are denotable values, i.e.
their members have to be in Dv.

	Example: the language TINY
	Standard semantics
	Direct semantics vs. continuation semantics
	Direct semantics vs. continuation semantics
	Continuations
	Continuation denotations of constructs
	Sample semantic clauses of TINY
	Sample semantic clauses of TINY
	Final answer of the program
	Final answer of the program
	Sharing
	Locations
	Stores
	Environments
	Standard domains of values
	Declarations and scope
	Standard domains of continuations
	Standard semantic functions
	L and R values
	L and R values
	Procedures
	Procedures
	Functions

