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Example: the language TINY

• Two kinds of constructs: expressions (E) and 
commands (C)

• Both constructs can contain identifiers (I)—strings of 
letters and digits beginning with a letter

Syntax of TINY:

E ::= 0 | 1 | true | false | I | not E | E1 = E2 | E1 + E2

C ::= I := E | output E | if E then C1 else C2 |
while E do C | C1; C2
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Standard semantics

• Denotational semantics is not able to handle 
constructs of real languages like

jumps, or
aliasing (multiple names of one variable).

• Therefore, more sophisticated denotations are 
needed—standard semantics is used.

• Standard semantics is based on
transforming states indirectly via continuations,
splitting the binding of identifiers to values into 
two parts: id→variable, variable→value.



3

Direct semantics vs. continuation 
semantics

• Denotational semantics is an example of direct 
semantics.

• In direct semantics:
each construct directly denotes its input/output 
transformation;
the transformation of the complete program is a 
combination of its components’ transformations;
the result of a construct is always passed to the 
rest of the program ⇒ the rest of the program has 
to cope with abnormal values ⇒ it is stuffed with 
test for these values.
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Direct semantics vs. continuation 
semantics

• In continuation semantics:
denotation of a construct depends on the rest of 
the program—or continuation—following it;
each construct decides for itself where to pass its 
result:
– usually to the normal continuation

(corresponds to the textually following code);
– to the continuation corresponding to an error 

stop;
– to the continuation corresponding to the code 

following a label, target of a jump.
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Continuations

• A continuation is a function from an intermediate 
result expected by the rest of the program (e.g. state, 
or value–state pair) to the final answer (e.g. state + 
error, or output + error).

• Command continuations correspond to the rest of the 
program  following a command and form a domain

Cont = State → [State + {error}]
• Expression continuations correspond to the code 

following expressions and form a domain
Econt = Value → State → [State + {error}]
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Continuation denotations of constructs

• In a continuation semantics the denotations of 
constructs are functions of continuations and states.

• The continuation semantic functions are of type:
E: Exp → Econt → State → [State + {error}]
C: Com → Cont → State → [State + {error}]
and they are defined so that:

k v s’ E has value v, transforms s to s’
error otherwiseE [E] k s =

c s’ if C transforms s to s’
error otherwiseC [C] c s =
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Sample semantic clauses of TINY

• Domains
State = Memory × Input × Output
Memory = Ide → [Value + {unbound}]
Input = Value*

Output = Value*

Value = Num + Bool
Cont = State → [State + {error}]
Econt = Value → Cont

• Functions
E: Exp → Econt → Cont
C: Com → Cont → Cont
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Sample semantic clauses of TINY

• Expressions:
E [0] k s = k 0 s, or by canceling s: E [0] k = k 0
E [read] k (m,i,o) = null i → error, k (hd i) (m,tl i,o)
E [I] k (m,i,o) = (m I = unbound) → error, k (m I) (m,i,o)
E [not E] k s = E [E] (λ v s’ . isBool v → k (not v) s’,

error) s
• Commands:
C [I := E] c = E [E] (λ v (m,i,o) . c (m[v/I],i,o))
C [output E] c = E [E] (λ v (m,i,o) . c (m,i,v.o))
C [C1; C2] c s = C [C1] (C [C2] c) s
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Final answer of the program

• A state as the final answer of running a program is 
unnatural. In practice, it is just output.

• Once outputted information should not be retrieved 
by the rest of the program ⇒ the output must not be 
passed to it as a member of state.

• Once outputted information must not be lost, if an 
error occurs (probe C [output 0] c with c = λs.error).

• An output of a program need not be finite. Consider 
the nonterminating program

x:=0; while true do (output x; x:=x+1)
Its output is 0.1.2.3…
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Final answer of the program

• New domain equations are:
State = Memory × Input
Memory = Ide → [Value + {unbound}]
Input = Value*

Value = Num + Bool
Cont = State → Ans
Econt = Value → Cont
Ans = {error, stop} + [Value × Ans]

• The semantic clause for output has to be changed:
C [output E] c = E [E] (λ v s . (v, c s))
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Sharing

• Sometimes distinct identifiers can denote the same 
variable ⇒ assigning to one of them will change the 
value of the others.

• Sharing may occur:
directly—as the result of explicit command or 
declaration, e.g. let l1 == l2.
indirectly—e.g. (in PASCAL) by declaring a 
procedure of the form

procedure P(var x:real, var y:real)…
and executing a call P(z,z).
Both x and y share the variable denoted by z.
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Locations

• Sharing is enabled by two-level association between 
identifiers and values:
1. an identifier is bound to a variable,
2. the variable is bound to a value.

• In formal semantics, the term location is used rather 
than variable.

• Locations are modeled by the domain Loc.
• The only structure on Loc is =: Loc × Loc → Bool

which tests locations for equality.
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Stores

• Stores model the binding of locations to values.
• The domain Store is defined as

Store = Loc → [Sv + {unused}]
where Sv is a domain of storable values.

• The function new: Store → [Loc + {error}] returns an 
unused location, or error, if an unused location is not 
available.

• The notation v1,…,vn/i1,…,in denotes the “little” store:
λi . i = i1 → v1,…, i = in → vn, unused
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Environments

• Environments model binding of identifiers.
• The domain Env of environments is defined as

Env = Ide → [Dv + {unbound}]
typical members will be r, r’, r1, r2 etc.

• Dv is the domain of denotable values. Sometimes, it 
can identify with Loc, but for most languages it 
contains also constants, procedures etc.

• For d1,…,dn∈Dv, I1,…,In∈Ide, r1, r2∈Env there are 
defined the following notations:

d1,…,dn/I1,…,In = (λI . I=I1→d1,…, I=In→dn, unbound)
r1[r2] = (λI . r2 I = unbound → r1 I, r2 I)
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Standard domains of values

• Unlike in TINY, in most languages we distinguish 
several value domains. The most important are:

storable values Sv—can be stored in locations; 
typical members will be v, v’, v1, v2 etc.;
denotable values Dv—can be denoted by an 
identifier in the environment; typical members 
will be d, d’, d1, d2 etc.;
expressible values Ev—results of expressions; 
typical members will be e, e’, e1, e2 etc.

• Other domains can also be needed, e.g. outputable
values, R-values (domain Rv) etc.
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Declarations and scope

• Declaration binds an identifier to a certain location.
• Scope of a declaration are the parts of a code where 

the declaration holds. (It is also possible to speak 
about scope of an identifier.)

• Example: declaration var I = E. It’s effect is:
1. a new location, say i, is obtained;
2. E’s value is stored in i;
3. i is bound to I in the environment.

• In standard semantics declarations change the 
environment and possibly the store. On the other 
side, command do only change the store.
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Standard domains of continuations

Domain of command continuations Cc
• Definition: Cc = Store → Ans
• Ans is a language-dependent domain of final answers
• Typical members will be c, c’, c1, c2 etc.
Domain of expression continuations Ec
• Definition: Ec = Ev → Store → Ans (or more neatly

Ec = Ev → Cc)
• Typical members will be k, k’, k1, k2 etc.
Domain of declaration continuations Dc
• Def.: Dc = Env → Store → Ans (or Dc = Env → Cc)
• Typical members will be u, u’, u1, u2 etc.
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Standard semantic functions

• The following semantic functions are used:
E: Exp→Env→Ec→Store→Ans for expressions,
C: Com→Env→Cc→Store→Ans for commands, and
D: Dec→Env→Dc→Store→Ans for declarations.

• The intuitive meanings are (omitting errors etc.):
E [E] r k s = k e s’ e is E’s value in environment r and store s, s’

is the store after E’s evaluation.

C [C] r c s = c s’ s’ is the store after C’s execution in 
environment r and store s.

D [D] r u s = u r’ s’ r’ consists of bindings specified in D, s’ results 
from D’s evaluation (with respect to r and s).
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L and R values

• Consider I1 and I2 denoting locations i1 and i2 and the 
command I1 := I2. There are two possibilities:

location i2 is stored in location i1, or
the contents of location i2 is stored in location i1.

• The second case is the common one ⇒ in standard 
semantics we assume that expressions on the right of 
assignments have their values dereferenced—i.e. 
have their values looked up in the store if they are 
locations.
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L and R values

• The following terminology is used:
expression’s L-value is a value needed on the left 
of  an assignment—a location; it is obtained by E
without any dereferencing.
expression’s R-value is a value needed on the 
right of  an assignment; it is (normally) obtained 
by dereferencing the value obtained by E.

• It is traditional to define new semantic functions
L: Exp→Env→Ec→Cc and
R: Exp→Env→Ec→Cc
for obtaining L-values and R-values, respectively.
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Procedures

• proc I(I1);C—declaration of procedure named I with 
formal parameter I1 and body C.

• I(E)—call of the procedure I; C is executed in an 
environment identical to the one in which the 
procedure was declared, except that I1 denotes the 
E’s value.

• The above type of evaluation is called static binding. 
There are also other types of bindings, e.g. dynamic 
binding using the call time environment.

• E in I(E) is called the actual parameter.
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Procedures

• The procedure declaration binds a procedure value to 
an identifier as follows:

p c e s = c s’ where s’ is the store resulting from
execution of p’s body.

• Domain of procedure values is
Proc = Cc→Ev→Store→Ans (or Proc = Cc→Ec);
typical members will be p, p’, p1, p2 etc.

• Intuitively, if p∈Proc then:

D [proc I(I1);C] r u = u (p/I), where p = λce . C [C] r[e/I1] c
• The semantics of procedure call is:

C [I(E)] r c s =
E [I] r (λe1s1.isProc e1 → E [E] r (λe2s2.e1 c e2 s2) s1, error) s
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Functions

• Notice that function calls, unlike procedure calls, are 
expressions and also function bodies are expressions.

• Domain: Fun = Ec→Ec
Typical members will be f, f’, f1, f2 etc.

• The semantics of function declaration is:
D [fun I(I1);E] r u = u (f/I), where f = λke . E [E] r[e/I1] k

• The semantics of function call is:
E [I(E)] r k s =
E [I] r (λe1s1.isFun e1 → E [E] r (λe2s2.e1 k e2 s2) s1, error) s

• Notice that Proc and Fun are denotable values, i.e. 
their members have to be in Dv.
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